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Abstract 

The natural frequency analysis of complex 
powertrain models created in Modelica presents a 
number of problems.  This paper presents the basic 
principles and some of the problems associated with 
carrying out this kind of analysis.  As a result of this 
work, a new feature in the Powertrain Dynamics 
Library has been developed to automate these 
methods and provide the end-user with a simple set 
of functions to perform natural frequency analysis.  
Simple examples are used to illustrate the problems 
and solutions and a complex powertrain model is 
then analysed using the library.     

Keywords: modal analysis; natural frequency; 
linearization; powertrain; NVH 

1 Introduction 

Modal analysis is the study of the dynamic response 
of a system at its resonance frequencies.  Modal 
analysis is used in many fields for example in 
structural engineering to design buildings resistant to 
earthquakes [1] and in vehicle powertrain design to 
avoid poor NVH characteristics [2]. 

For a vehicle, modal analysis is carried out on all 
parts of the car to determine their natural 
frequencies. Care is taken to make sure that the 
natural frequencies of the parts in the car are all at 
distinct, separate frequencies.  If the natural 
frequencies are not suitably separated this can lead to 
resonance across multiple parts of the car and a poor 
NVH characteristic. 

A new feature has been introduced in the 
PTDynamics library [3] [4] to perform the natural 
frequency analysis of powertrain models created 
using this library.  This paper highlights some of the 
problems involved with this type of analysis based 
on Modelica models and discusses some of the 
techniques developed to solve these. 

To determine the natural frequencies of a model 
and the corresponding modal response we start by 

linearising the model at the required operating point.  
Linearisation of a model using Dymola returns the 
state-space representation of the model and from this 
the natural frequencies can be calculated.  The 
natural frequencies are found when all damping in a 
model is removed.   

2 Modal frequency analysis and 
Modelica models 

2.1 Basic Principles 

This section looks at the basic modal analysis 
principles applied to a spring mass network.  The 
example of a spring mass network has been chosen 
so that the natural frequency of a model can be 
described.  An unforced spring mass network can be 
represented by the following ordinary linear 
differential equation: 
 
 ��� + ��� + �� = 0	  
 
It is common to calculate the natural frequency of 
the above equation with the damping term set to zero 
so the equation becomes:   
 
 ��� 	+ �� = 0 (1) 
 
The natural frequency of the spring mass system can 
now be calculated from the roots of the above 
equation.  The roots are the eigenvalues and 
eigenvectors of the equation. 

To perform modal analysis on complex models 
we linearise these first which generates the state 
space representation of the model.  The state space 
representation of a model is given by:	 

 
 �� = �� + �		� = �� + �� 

(2) 

where: 
A, B, C and D are matrices 
u is the vector of inputs 
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y is the vector of outputs 
x is the vector of states 
 
To rearrange our simple spring-mass system in to 
state space form is done by transforming equation (1) 
in to the following form: 
 
 �� = −�����	  
 
In this simple example, there are no inputs so the u 
term is dropped and there are no outputs so the 
equation for y is not required.  The model is then 
reduced to: 
 
 �� = 	��	 (3) 
where � = ���� � 
and � = � 0 1−���� 0� 
 

2.2 Eigenvalues and eigenvectors 

For a given matrix A the eigenvalues and 
eigenvectors are calculated such that: 
 �� = �� 
where: � is the eigenvector associated with the eigenvalue � is an eigenvalue 
 
The eigenvalue solutions, are the roots of: 
 ��� − ��� = � 
 
All the eigenvalues are included in vector � that is 
referred to as the eigenvalues of A.  The eigenvectors 
are combined row wise into matrix v. The 
eigenvectors and eigenvalues of this equation are 
calculated so that the natural frequency can be 
calculated as follows in section 2.3. 

2.3 Frequency and damping 

The natural frequency is calculated from the 
eigenvalues as [5]: 
 
 � = |�|2!  

 
where: 
|| is the complex norm � is frequency in Hertz 
 

The complex norm is the sum of the squares of the 
real and imaginary parts all square rooted.  There is 
also a damping term that is associated with each 
eigenvalue.  In the case where the damping has been 
set to zero, this term will be zero and will not 
influence the natural frequencies of the model.  The 
damping term can be calculated with the following 
equation [6]: 

 
 
 
 

" = 	# 0, |�| = 0Re(�)|�| , |�| ≠ 0*	  

 
where: Re()  is the real part of a complex number 
 
The frequency that a model with damping oscillates 
at without being driven by an outside force is 
referred to as the damped frequency and using 
eigenvalue analysis this is calculated as : 
 
 +, = +-.1 − "/  
 

2.4 Issues for complex Modelica models 

The current analysis described above can be easily 
performed on a spring mass network but it is not as 
easy to implement this on a complex Modelica 
model.  A number of issues arise when trying to 
apply this process using a Modelica tool such as 
Dymola. 

 A complex model will contain a large number of 
state variables and we would normally expect to find 
many states that do not have any effect on the natural 
frequency response of the physical states of the 
model.  For example, states within a driver model or 
control system that do not directly influence the 
physical response of the system.  These states should 
be removed from the analysis to reduce the time 
taken to do the analysis. 

Some Modelica tools are able to compile models 
using dynamic state selection.  Currently models that 
use dynamic states cannot be analysed and a fixed 
set of states needs to be applied to the model.  This 
has to be done by the user before starting the 
frequency analysis. 

In the simple spring mass network presented so 
far we have not considered the possibility of the 
relative state of the spring being selected as a state 
rather than the position of the mass.  Modelica tools 
are able to select a set of states from a model and in 
many cases they will select relative states rather than 
absolute states.  Whilst the natural frequencies of the 
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Figure 1: Process to convert relative states to 
positional states 

system are unaffected by the choice of state variable 
it is preferable in this type of analysis to use the 
absolute states of the system.  Using the absolute 
states makes the interpretation of the modal response 
easier as the points of interest become physical 
points such as the driveshaft ends or pinion gear 
rather than relative states such as the driveshaft twist 
or relative angle between pinion and crown wheels. 

Further problems are observed when component 
models that utilize the standard Modelica friction 
model are included for analysis.  The behaviour of 
the slip/stick friction models is not linearized in the 
expected manner and modifications to the analysis 
have to be made around these components. 

To calculate the natural frequencies the damping 
terms have to be removed from the model but 
without the damping often models will not simulate.  
This causes a problem for the initialisation of models 
and when the model needs to be analysed under 
different operating conditions, for example, in 
different gears or under different loading conditions 
where springs are compressed to different parts of 
their non-linear force curve. 

3 Implementation in the Powertrain 
Dynamics Library 

The Powetrain Dynamics (PTDynamics) library is 
used to create complex MultiBody models of 
powertrains in a user friendly and efficient manner.  
A new feature has been introduced to determine the 
natural frequencies of these powertrain models.  A 
number of issues are present that make performing 
the natural frequency analysis difficult when 
working with Modelica models (refer to Section 2.1). 
This section describes some of the methods 
implemented in to the linearization functions 
available in the PTDynamics library that are used to 
overcome these issues. 

3.1 Relative states 

The natural frequencies of the model are typically 
calculated for positional states (i.e. position or 
angular position).  However when a model is created 
using Modelica, the modelling tool can choose to 
select relative states (such as spring extension) rather 
than positional states (such as the position of ends of 
the spring).  When this is detected in a model the 
relative states are converted in to positional states 
before linearizing the model. 

The first step in the analysis process is to 
determine the states used in the model which is done 
by translating the model and analysing the list of 

selected states.  If relative states are detected then the 
model has to be modified by adding outputs that 
measure the positions either side of the component 
with the relative states, see Figure 1.  The model can 
then be linearized and the resulting A matrix 
manipulated to transform the relative state in to a 
positional state.  Within the PTDynamics library a 
precise naming convention is used to enable the 
automatic detection of relative and absolute states 
from the variable names. 

By only making the transformation from relative 
to positional state in the linearized model we do not 
affect how the original model simulates.  This means 
that we can still use the original model to get the 
system to the desired operating point and then 
linearize it.  If we forced the user to only use 

Session 6B: Mechanic Systems III 

DOI Proceedings of the 9th International Modelica Conference    699 
10.3384/ecp12076697 September 3-5, 2012, Munich, Germany   



positional states in the model we may introduce 
slight differences in to the model due to the different 
equation solutions required and we could impact the 
simulation time. 

When the modified model, with the added 
outputs, is linearized, the resulting state space 
representation includes these outputs in the C matrix.  
This matrix relates the position outputs to the states 
in the model.  Each relative state will generate two 
outputs but only one of these outputs will be related 
to the relative state by the C matrix. This state is 
used to replace the relative state.   

Using the spring mass model as an example we 
can see how this manipulation of the A matrix 
should be performed.  Linearizing the modified 
model gives the following: 
 0 = �0 �1

1 0 � 
 

1 � �0 0
0 1� 

 
23435	64752 � 87422. :, 2;<=6>. 2_<5@A 
BC3;C3	64752 � 	 8;B2=3=B61, ;B2=3=B62A 

 
From the C matrix it is seen that position2 is related 
to spring.s_rel as: 
 
 DEFGHGEIJ � ��2, : �� 
 
where: 
� are the states of the model 
 
A transformation matrix is now created that 
transforms � to a set of states that does not contain 
relative states.  In this example the transformation 
matrix would be: 
 

L � M 1 0
��2,1� ��2,2�N 

  
 �OPQ � R� (4) 
  
Replacing � in (3) with �OPQ from (4) gives: 
 
 �� ST� � L�L�U�ST�  
 
A drawback of this method is that it can select a state 
that is only associated with a position and not 
directly with an actual mass or inertia state. Figure 2 
illustrates a case where this behaviour is present.  
The user currently has to review the selections made 

during the analysis process to ensure that these 
situations are avoided. 
 

 
Figure 2: The initial states of the model include 
spring2.s_rel, this state is replaced with spring2.flange_a.s 
that is a state without a mass 

3.2 Friction components 

A number of component models such as clutches and 
brakes use the Modelica Standard Library coulomb 
friction model [7] that handles the stuck and sliding 
modes in a clean way using state events.   When this 
is linearized using the built-in Dymola function the 
model is sometimes linearized as if in the slipping 
mode regardless of the actual state of the component.  
A method has been developed to adjust the model 
and resulting state space model to correctly account 
for the friction state.   

Figure 3 shows an overview of the automatic 
process that is used to overcome this using the 
PTDynamics library.  First the model is translated 
and the names of the selected states are analysed to 
determine if there are any states that relate to friction 
and to determine what state the friction model is in at 
the instant that the model is being linearized at.   

If the friction model is in the stuck mode then it is 
necessary to join the positional states in the A matrix 
that are either side of the frictional component.  To 
be able to join states in the A matrix it is necessary to 
calculate the mass/inertia of the states being joined 
together.  This is done by adding torque inputs to the 
corresponding positional states either side of the 
friction component.   

 In the example shown in Figure 3, we would 
detect the friction states within the clutch and then 
modify the model.  In addition to adding a torque 
input either side of the friction model we also need to 
add position outputs either side of the friction model 
so that we can join the states in the locked mode. 
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After the modified model is linearized the B matrix 
is used to determine the mass of the states.  This 
information together with the state space C matrix 
can then be used to update the A matrix by joining 
the states on either side of the friction component.  

The mass of the states is determined as follows, 
the basic equation describing a spring mass system 
that contains a force is: 

 
 VW � X� + Y� + Z  
where: 

V is mass 

� is position 

� is velocity  

W is acceleration 

X is stiffness  

Y is damping vector 

Z is the applied force 

 

In the example shown in Figure 3, the positional 
states that the clutch is connected to are independent 

which means the following equation can be used to 
describe both states that need to be joined together 
and rearranged as: 
 

 2� � 7��[2 +7��\2� + 7��]  
 

The state space representation of this equation is:  
 
 �2�2�� � � 0 17��[ 7��\� �22�� + � 07���] (5) 

 
From (2) and (5), we can determine that the state 

space B matrix is equal to � 07���, so the mass/inertia 

for the states to be joined can be calculated.  Using 
the example shown in Figure 3, we get the following 
values when linearising the modified model.  
 

0 = ^ 0 1−1 0 0 00 00 00 0 0 10 0_ 
 

` = ^010
0000 0.5_ 

 

1 = �1 0 0 00 0 1 0� 
 23435	64752 = 8=1. ;ℎ=, =1.+, =2. ;ℎ=, =2. +A =6;C3	64752 = 	 834C1, 34C2A BC3;C3	64752 = 	 8;B2=3=B61, ;B2=3=B62A 

 
Using the B matrix we can determine the inertia of 
the two bodies either side of the clutch. 

 7� = �cd,ef� 7/ = �cg,df/ 
 

To modify the A matrix we use the B matrix to 
determine the rows in the A matrix that should be 
combined.  The C matrix is then used to determine 
the columns that need to be combined.  After 
combining the rows and columns we can remove the 
redundant rows and columns from the A matrix.   

In this example we find that the 2nd and 4th rows 
need to be combined as well as the 1st and 3rd 
columns which results in: 
 

0 = ^ 0 + 0 1
h(−1 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j h(0 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j_ 

 

0 = � 0 10.333 0� 
 Figure 3: Process to handle friction components 
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To include damping effects when joining states using 
this method the columns corresponding to the rows 
determined from the B matrix need to be added 
together as well.   

There is a known limitation of the joining method 
demonstrated here and used in the PTDynamics 
library in that the states being joined together must 
be independent states.  This means that the positional 
state must not be dependent on other positional 
states. An example of a component that has 
dependent states is a planetary gear where the 
rotational states of the three shafts are dependent on 
each other.  To overcome this limitation a flexible 
shaft has to be connected between a clutch and a 
planetary gear in a gearbox to be able to join the 
states on either side of the clutch using this method. 

4 Applications 

4.1 Simple example 

This simple example contains three inertias with the 
first two separated by a clutch and the second and 
third inertia separated by a spring as shown in Figure 
4.  A ramp input is used to actuate the clutch and 
goes from 0 at 0s to 1 at 1s.  The response for the 
clutch state and the speeds of the inertias either side 
are shown in Figure 5. 

If the model is linearized at t=0s, i.e. when the 
clutch is open we find the natural frequency is at 
5.29Hz.  If the model is linearized at t=2s, when the 
clutch is locked, the natural frequency occurs at 
2.20Hz.   

The change in frequency occurs because the total 
effective inertia on the left hand side of the spring 
has changed.  Without using the method to join the 
states either side of the clutch the built in functions 
report no change in the natural frequency despite the 
change in configuration of the model. 

 
Figure 4.  Simple model that contains a clutch and a 
spring 

 
Figure 5.  Plots of locked and angular velocity of inertia 
and inertia1 in the Simple model in Figure 4. 

4.2 Full vehicle example 

A model of a front engine, rear-wheel drive vehicle 
with a manual transmission was constructed using 
the PTDynamics library it fully test the new 
functions and methods.  The model is shown in 
Figure 6.  The engine model is a simple mapped 
engine model but the transmission and driveline are 
more detailed.  Figure 7 shows the gearset model 
from within the transmission.  The gearset and 
driveline models include torsional compliance in a 
number of the shafts but are rigidly mounted within 
the chassis.  Overall this model has a good torsional 
representation of the powertrain system and would 
be suitable for studying driveability events such as 
tip-in and tip-out. 

 

 
Figure 6.  PTDynamics vehicle example that is linearized  

 

chassis

ori?

road atmosphere
w orld

x

y

transmi?engine

mou?

gear

k=1

clutchC
l?

duration=2

throttle

k=1

throttleAngle_1 clutchPedalPosition gear

co
nt

ro
lB

us

engineC? driverBus

Natural frequency analysis of Modelica powertrain models 

 

702 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076697 



 
Figure 7.  Gearset used in vehicle example. 

The chassis model doesn’t include suspension but 
the tyres do include a slip model based on the well-
known Pacejka tyre model.  This required the 
development of a method that relates the wheel 
rotation to the chassis movement.  This was 
necessary because the slip models are based on 
velocity relationships but for this type of analysis we 
need the relationships to be based on position.  The 
method developed assumes that the ratio between the 
wheel rotation and the chassis motion is a fixed ratio 
at the instance that linearization occurs.  The details 
of this method are not described in this paper. 

The model was linearized and the following 
natural frequencies are found (in Hz): 5.1, 35, 124, 
266 and 343.  The 5.1Hz response is the shuffle 
frequency of the vehicle and the modal response is 
shown in Figure 8. The x-axis of the modal response 
plots is an integer that corresponds to the states listed 
in Table 1.  The magnitudes are normalised with 
respect to the variable with the largest displacement. 

The modal response shows that at this frequency 
there is very little motion of the chassis but the 
whole powertrain is moving out of phase with the 
chassis and at relatively large displacements.   

 
 No. State 

1 transmission.clutch.drivenPlate.flange_a.flange.phi 

2 transmission.gearset.uniformShaft10.body_a.phi 

3 transmission.gearset.uniformShaft.body_a.phi 

4 driveline.rearDifferential.pinion.phi 

5 driveline.rearDifferential.differentialAssembly.outputGear_2.phi 

6 chassis.motion.prismatic_x.s 

Table 1.  States of simple vehicle.  Each number 
corresponds to a state.  The number in the legends in 
Figure 8 corresponds to the number in this table. 

It is also possible to generate Bode diagrams for 
different inputs and outputs of the vehicle model.  
The example shown in Figure 8 is the bode diagram 
generated when engine torque is an input to the 
system and the differential pinion gear rotation angle 
is the output. The Bode plotting function in 

Modelica_LinearSystems2 is used to generate the 
actual plot. 
 

 
Figure 8.  Modal response of the vehicle model at 5.1Hz.  
The magnitude and phase of the different states are 
plotted.   Each state is assigned to a position along the x 
axis as determined by the legend.  The numbers in the 
legends correspond to the states in Table .  

 

Figure 9.  Bode diagram with Engine torque as the input 
and differential pinion position as the output. 

5 Conclusion 

A new method for determining the natural 
frequencies and modal responses of complex 
Modelica models has been developed and introduced 
as a new feature in the Powertrain Dynamics library.  
This feature includes automated methods to handle 
the problems with relative states and friction 
components as described in this paper in addition to 
other methods to handle further problem areas such 
as tyre slip models.  The feature will be further 
improved to provide animation of the modal 
response of the powertrain to aid the understanding 
of the natural frequencies of the powertrain system. 
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