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Abstract

The Jülich-Aachen Dynamic optimization Environ-
ment (JADE) is employed for computing first- and
second-order parameter sensitivities of a metaboli-
cally and isotopically non-stationary biochemical net-
work model. Based on a Modelica representation of
the model, code generation, algorithmic differentiation
and first- and second-order adjoint sensitivity analy-
sis are employed for computing the gradient and the
Hessian of a parameter estimation objective function.
In particular, we use composite adjoints, an exten-
sion of the classical adjoint sensitivity analysis, and a
numerical integrator based a modification of second-
order discrete adjoints of the extrapolated linearly-
implicit Euler method. Therewith, the 116× 116-
Hessian of the objective function with respect to 116
model parameters can be computed at the cost equiv-
alent to only 18 objective function evaluations, while
computing the same Hessian with the cheapest finite-
difference formula would require 6845 evaluations of
the objective function.

Keywords: biochemical network model; parameter
sensitivities; automatic differentiation

1 Introduction

Kinetic-based modeling is the method of choice
for unraveling complex interactions in living micro-
organisms [8]. Only this approach allows to analyze
the response of organisms to extracellular stimuli, such
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as changes in the substrate concentration. Moreover,
industrial processes are typically run in cultivation
modes, in which the intracellular metabolism cannot
be assumed to be in a stationary state. Metabolically
non-stationary network models include rate laws for
the enzyme catalyzed reactions, and the correspond-
ing model equations depend on several kinetic param-
eters. The rate laws also include regulatory effects, i.e.
activation and inhibition by other metabolites, which
increases the overall complexity of the network. Ki-
netic models are normally calibrated using measured
intracellular metabolite concentrations. However, the
ratio between the number of unknown parameters and
the quantity of available measurement data is often in-
sufficient. Consequently, the kinetic parameters are
poorly determined or even non-identifiable on the ba-
sis of such data.

This limitation can be overcome by combining clas-
sical kinetic modeling with an isotope-labeling ap-
proach ([11], [3]). In this approach, experiments are
performed with a specifically 13C-labeled substrate
instead of the slightly lighter, naturally 12C-labeled
substrate. 12C as well as 13C-atoms are distributed
through the reaction network and form specific la-
beling signatures in the involved metabolites. These
signatures, so called isotopologues, consist of differ-
ently many heavier (labeled) and lighter (naturally la-
beled) carbon atoms, and can be quantified using the
LC-MS measurement technique [12]. Hence, the use
of labeled substrates increases the amount of data for
each metabolite proportional to its number of carbon
atoms. However, the model dimensions are strongly
increased. The extended model requires increased
computational resources not only for solving the for-
ward problem, but also for determining gradient and
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Hessian information for efficiently solving the invers
parameter estimation problem.

2 Biochemical Network Model

The combined metabolically and isotopically non-
stationary modeling approach is illustrated with an ex-
ample network of Escherichia coli [2]. The biochem-
ical network covers glycolysis and the pentose phos-
phate pathway. The model involves 28 metabolites
(thereof 8 co-metabolites) and 28 reactions (thereof 8
effluxes), as illustrated in Figure 1.

The equations for the kinetic rates, r, the values
of the stoichiometric constants, pstoich, and of the ki-
netic parameters, pkin, and the initial metabolite con-
centrations, c0, are taken from the same publication
[2]. The model is extended from the metabolically
non-stationary case to the metabolically and isotopi-
cally non-stationary case by transforming the differen-
tial equations, that describe the change of metabolite
concentrations, c, over time (Equation 1), into sets of
differential equations for the so-called cumomers, m
(Equation 2).

dc
dt = f (c,r, pstoich)

r = g(c, pkin)
c(0) = c0

(1)

A cumomer can be interpreted as a molecule frag-
ment that is fully labeled to a specified degree ([13],
[14]). The cumomer, e.g., m#x1x of a metabo-
lite, m, with three carbon atoms includes the four
differently labeled species m#x1x = ∑i, j∈{0,1}m#i1 j,
namely m#010, m#110, m#011 and m#111, where the
digits 0 and 1 denote the isotopes 12C and 13C, re-
spectively. The concentration of a cumomer fraction
is defined as the sum of the concentrations of all cor-
responding species. In particular, the concentration of
the cumomer m#xxx is the absolute metabolite concen-
tration, c. A metabolite with n carbon atoms has 2n cu-
momers in total. The formulation of cumomer balance
equations requires structural information on: (1) the
underlying metabolic network model, i.e. all partici-
pating enzymatic reaction steps, (2) the carbon atom
transitions for each of these steps (see Figure 2 for an
example), and (3) the kinetic mechanisms [11].

dm
dt = f (m,r, pstoich)

m(0) = m0
(2)

The cumomer balances in Equation 2 are combined
with the original kinetic equations from Equation 1.

The vector c, containing all metabolite concentrations,
is a subset of the vector m, containing all cumomer
fractions m#i jk with i, j,k ∈ {1,x} of all metabolites.
The initial values of the algebraic variables, r, are de-
termined such as to fulfill the algebraic equation, g.

Realistic models, e.g., of the central carbon meta-
bolism, have around 30-40 metabolites, 50-60 reac-
tions and 30-40 regulatory relations leading to model
dimensions of 1,000 to 10,000 equations. Moreover,
Equation 2 is typically stiff, dense and highly non-
linear.

Figure 2: Carbon atom transition of a reaction
that converts D-fructose-1,6-bisphosphate (FBP)
into glyceraldehyde-3-phosphate (GAP) and
dihydroxyacetone-phosphate (DHAP). The lines
describe transitions of individual carbon atoms from
the substrate to the product.

The final E. coli network model contains 682 dif-
ferential equations that are linear combinations of the
non-linear rate equations (see Equation 2). The rates
do generally not only depend on the concentrations of
the related substrate and product molecules, but can
also depend on the concentrations of other molecules
that act as activators and inhibitors of the catalyzed re-
action. Equations 3 and 4 show typical examples in
which the kinetic parameters are highlighted in bold-
face. Sensitivities of the model solution with respect to
these parameters are often required for parameter esti-
mation and in the context of metabolic control analy-
sis.

Equation 3 describes the enzyme D-glucose-6-
phosphate aldose-ketose-isomerase (pgi) and is for-
mally a reversible Michaelis-Menten kinetic with one
generic inhibitor. Parameters are the maximal reaction
rate rmax, an equilibrium constant keq, two inhibition
constants ki, and two affinity constants km. Equation 4
describes the enzyme phosphoglycerate kinase (pgk)
and is formally a two-substrate reversible Michaelis-
Menten kinetic. Parameters are, in addition to the
first kinetic equation, the coupling constants of the co-
metabolites ATP and ADP.
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Figure 1: Biochemical network of E. coli including the glycolysis (orange) and the pentose phosphate pathway
(red). The metabolites (rectangles) are converted by reactions (rhombi). Additional lines show regulatory
interactions: activation (green lines), inhibition (red lines) and co-metabolite coupling (dashed lines, yellow
metabolites).

3 JADE

The biochemical network model from the previous
section has been implemented in Modelica and tested
with Dymola. However, Dymola does not provide ca-
pabilities for higher-order sensitivity analysis, which
are essential for many engineering tasks such as
parameter estimation, optimal experimental design,
optimal control and dynamic real-time optimization
(DRTO). This gap will be closed by the Jülich Aachen
Dynamic Optimization Environment (JADE), a new re-
search program that sustains ongoing collaborations
between Aachener Verfahrenstechnik – Process Sys-
tems Engineering (AVT.PT), the Jülich Biotechnology
Institute (IBG-1), and Software Tools for Computa-

tional Engineering (STCE). AVT.PT and STCE are
both chairs at RWTH Aachen University and IBG-1
belongs to the Forschungszentrum Jülich. The JADE
concept includes a software infrastructure for sensitiv-
ity analysis of differential-algebraic equation systems.

This publication addresses a prototypical task
within the JADE framework, the determination of pa-
rameter sensitivities of a residual function for estimat-
ing unknown model parameters. The biochemical net-
work example is taken as an example, but the pre-
sented software infrastructure works for a wider class
of Modelica models, without discontinuous elements,
i.e. without “if”- and “when”-assignments. A soft-
ware infrastructure is presented, that provides an easy-
to-use integrated solution for determining the required
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rpgi =
rmax

pgi

(
cG6P−

cF6P
keq,pgi

)
kmG6P,pgi

1+ cF6P

kmF6P,pgi

(
1+

cm6PG
kiF6P,m6PG,pgi

)+ cm6PG
kiG6P,m6PG,pgi

+cG6P

(3)

rpgk =
rmax

pgk

(
cADP·cPGP−

cAT P·cm3PG
keq,pgk

)
(

kmADP,pgk

(
1+ cAT P

kmATP,pgk

)
+cADP

)(
kmPGP,pgk·

(
1+ cm3PG

kmm3PG,pgk

)
+cPGP

) (4)

first- and second-order derivatives.

Workflow

The workflow for computing sensitivity information
can be divided in three layers (see Figure 3 for a
schematic sketch):

1. A so-called equation set object (ESO), an in-
stance of a C++ class which provides data and
methods related to the model.

2. A Meta ESO object, an instance of a C++ class
which assembles one ESO or, in the case of
multistage models, several ESOs and information
about the parametrization of the model (we refer
to [9, 10] for details on multistage problems).

3. Drivers for the NIXE integrator [5], a numerical
solver for (adjoint) sensitivity analysis of DAEs,
based on the information assembled in the Meta
ESO, to carry out sensitivity analysis tasks.

Figure 3: Layers of the software infrastructure.

Currently, flat Modelica models are translated into a
subset of the C language, referred to as C-, by means
of the Mof2C- application. In flat or flattend Model-
ica models, all object-oriented features are removed by
the expansion of all sub-models and their connections.
In particular, a flat Modelica model contains no sub-
model, it has a “flat hierarchy”. A residual function of
the DAE is created to be differentiated by means of al-
gorithmic differentiation in form of the derivative code
compiler (dcc) [7], an AD tool relying on semantic
source code transformation. On Windows platforms,

the source code, generated by Mof2C- and dcc is com-
piled into a dynamic link library. Figure 4 shows a
typical workflow within the JADE framework.

Figure 4: JADE workflow for sensitivity analysis.

4 Results

We present first- and second-order adjoint sensitivity
computations for the biochemical network model from
section 2. The model is formulated in Modelica with-
out using discontinuous elements. It belongs to the
class of smooth semi-explicit index-1 differential al-
gebraic equations of the type of Equations 5 to 7.

ẋ(t, p) = f (x(t, p),y(t, p), p), t ∈ [t0, t f ], (5)

0 = g(x(t, p),y(t, p), p), t ∈ [t0, t f ], (6)

x(t0, p) = x0, (7)

Here, x(t, p)∈Rnx and y(t, p)∈Rny denote the vectors
of differential and algebraic state variables, p ∈Rnp is
the parameter vector, f and g denote the differential
and algebraic equations, respectively, x0 ∈ Rnx is the
vector of initial values and t0 and t f are the initial and
final times, respectively.

The model comprises 1488 state variables, thereof
683 differential and 805 algebraic, as well as 337 pa-
rameters, thereof 116 relevant for a typical parameter
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estimation. The model is sparse in that the Jacobians
of f and g with respect to x, y and p have in the sum
only 9121 nonzero entries. The initial time is set to
t0 =−20 in order to simulate the system in a stationary
state before a concentration pulse is applied at t = 0,
and the final time is t f = 40.

For the purpose of parameter estimation we
need to compute a least-squares residual, as well
as it’s gradient and Hessian. Let yout(t, p) =
(yi1 ,(t, p), . . . ,yiny,out

(t, p)) ∈ Rny,out , i j ∈ {1, . . . ,ny},
j = 1, . . . ,ny,out , denote the vector of measured vari-
ables, which is in the present example a subset of the
algebraic variables. For the residual we consider a fi-
nite time series t1 < t2 < · · · < tN and a matrix of cor-
responding measurements Ỹ = (ỹi j) ∈ RN×ny,out . With
scalar weights σi j, i= 1, . . . ,N, j = 1, . . . ,ny,out , the pa-
rameter estimation objective function has the follow-
ing form:

Φ(p) = φ(yout(t1, p),yout(t2, p), . . . ,yout(tN , p))

:=
N

∑
i=1

ny,out

∑
j=1

σi j (yout, j(ti, p)− ỹi j)
2. (8)

We assume measurements to be available for
ny,out = 103 output variables every 0.5 seconds, start-
ing from t1 = 0 to tN = t81 = 40. As real measure-
ments are currently not available, synthetic data Ỹ =
(ỹi j) ∈ R81×103 were generated by adding normally
distributed noise with a standard deviation of 10% to
the nominal values. The weights are chosen as:

σi j =
1

0.01+ ỹi j
2 , i = 1, . . . ,81, j = 1, . . . ,103,

The summand 0.01 in the denominator is introduced
for avoiding division by zero in the case ỹi j = 0 and to
reduce the impact of small-valued measurements.

Let pest ∈ Rnp,est denote the vector of parameters
to be estimated: pest, j = pi j , i j ∈ {1, . . . ,np}, j =
1, . . . ,np,est , np,est = 116. Our software infrastructure
is benchmarked for the following tasks:

1. Simulate the original model

2. Compute value of the objective function Φ.

3. Compute the gradient ∂Φ/∂ pest by means of
first-order adjoint sensitivity analysis.

4. Compute the gradient ∂Φ/∂ pest by means of
first-order forward sensitivity analysis.

5. Compute the Hessian ∂ 2Φ/∂ pest
2 by means of

second-order adjoint sensitivity analysis.

Code Generation and Compilation

All computations are performed on a Notebook with
a 2.53 MHz Intel Core2 SP9600 processor, equipped
with 4 GB RAM and running Linux Mint 12.

As illustrated in Figure 4, the first task of the JADE
architecture is to generate C-code from a flat Model-
ica model. This done by the Mof2C- compiler, which
generates a C-function of the model residual and re-
lated utility functions, e.g., for providing access to the
variable names. This part of the code generation takes
roughly 4 seconds. Then, the derivative code com-
piler dcc, an algorithmic differentiation (AD) tool, is
applied for generating derivatives of the model resid-
ual. This part takes approximately 5 minutes, thereof 4
minutes for the generation of the second-order adjoints
of the model residuals.

The generated code, including the derivative codes,
is then compiled either in a dynamic link library (DLL)
on Windows platforms or a shared object on Linux or
UNIX platforms. Here, the compilation times strongly
depend on the compiler flags, especially on the opti-
mization flags. The sequential compilation times with
the g++-4.6.1 compiler of the GNU Compiler Col-
lection (gcc) are 2 minutes (thereof 1 minute for the
second-order adjoints) for non-optimized code, and for
optimized code (-O3-flag) 53 minutes (thereof 37 min-
utes for the second-order adjoints).

Simulation and Sensitivity Analysis

We apply the JADE infrastructure for simulating and
evaluating the objective function, as well as it’s gra-
dient and Hessian with either optimized or non-
optimized compiled code. The numerical kernel re-
lies on the NIXE integrator. NIXE implements the
extrapolated linearly-implicit Euler method, and pro-
vides facilities for higher-order forward or adjoint sen-
sitivity analysis. In detail, NIXE implements a mod-
ified discrete adjoint method for the adjoint sensitiv-
ity analysis [5]. Further, since the objective func-
tion φ in Equation 8 depends on different points in
time, we use the technique of composite adjoints
[4], instead of the classical adjoint sensitivity analy-
sis (which only submits one final time) [1]. When-
ever the gradient or Hessian of a DAE-embedded func-
tional of the type φ(x(t1, p), . . . ,x(tN , p)) with respect
to sufficient many parameters has to be computed
(cf. Equation 8), from the view of computational effi-
ciency, composite adjoints are the method of choice.
Roughly spoken, composite adjoints compute a lin-
ear combination of the N classical adjoints associated
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with φ(x(t1, p), . . . ,x(tN , p)) corresponding to the final
times t1, . . . , tN . The computational cost of composite
adjoints is equivalent to the cost of only one classical
adjoint computation with a final condition at tN . For
details we refer to [4].

Table 1 shows the performance of different com-
putations. For comparison, we have also executed a
simulation with Dymola 7.1 in combination with MS
Visual Studio 2008 on the same notebook but running
Windows 7 (see last row of Table 1).

Table 1: Computational performance
JADE results, AbsTol=RelTol=10−5

1488 state variables, 116 parameters
Run time

Task Optimized Non-opt.
Simulation 1.7 s 2.3 s
Objective 10.5 s 14.5 s
Gradient (adjoint) 14.5 s 19.9 s
Gradient (forward) 46.8 s 63.5 s
Hessian (2nd adjoints) 180.0 s 465.0 s
Dymola Simulation 1.6 s (DASSL, Tol=10−5)

The simulation time of JADE is competitive with
Dymola, for both the optimized and the non-optimized
compiled codes. However, Dymola does neither sup-
port first-order nor second-order sensitivity analysis.
We observe that the evaluation the objective func-
tion takes much longer than the simulation. This is
due to the NIXE integrator stopping at the measure-
ment times and resetting the adaptive step size control.
Computing the 116 components of the gradient with
adjoint sensitivity analysis takes only about 1.5 times
the time of one single function evaluation for both the
optimized and the non-optimized codes. Forward sen-
sitivity analysis is 3 times slower (optimized and non-
optimized). Computing the 116× 116-Hessian ma-
trix takes 180 seconds with the optimized compiled
code and 465 seconds with the non-optimized com-
piled code.

Comparison with Finite Differences

If we compare the computational times of the JADE
sensitivity analysis with the costs of finite differences,
we clearly see the superiority of the tailored numerical
methods of JADE. Table 2 shows compute time ratios
of the different sensitivity tasks as compared to a sin-
gle objective function evaluation.

The cheapest finite differences formulas would re-
quire 117 = 1+116 function evaluations for the gradi-
ent and 6845 = 1+116+1162/2 function evaluations

for the Hessian. The excellent numerical performance
of the JADE prototype is mainly achieved by combin-
ing the AD tool dcc [7] with composite adjoints [4]
that are computed with the specifically tailored numer-
ical integrator NIXE [5], which strongly exploits the
structure of the underlying (adjoint) sensitivity equa-
tions.

Conclusions

We have introduced the JADE platform for first- and
second-order sensitivity analysis of DAE models. The
platform combines code generation, algorithmic dif-
ferentiation and a customized numerical integrator for
forward and adjoint sensitivity analysis. The pre-
sented results in particular for computing the Hessian
of the studied parameter estimation objective function
are more than competitive. The complete 116× 116
Hessian of the objective function is computed at the
cost of 18 single function evaluations, yielding accu-
rate second-order derivatives. In comparison, com-
puting the same Hessian with the cheapest and least
accurate finite difference formula would require 6845
function evaluations. This makes the JADE platform
particularly attractive for large-scale applications with
nonlinear numerical optimization solvers that require
second-order derivatives.

Outlook

Up to now, the numerical methods of JADE are re-
stricted to smooth Modelica models without discon-
tinuities. However, many systems, e.g., from engi-
neering or biotechnology, need to be modeled with
non-smooth differential-algebraic equations. In addi-
tion, the modeling process can yield under-determined
differential-algebraic systems (more variables than
equations). In this case, some of the model variables
must be determined by external criteria, for example
by means of an optimization criterion. The resulting
models do not belong to the well-known class of hy-

Table 2: JADE (optimized) versus finite differences
Cost factor = run_time(Task)

run_time(Ob jective)

Task
JADE

Finite differences
forward adjoint

Objective 1 - 1
Gradient 4.5 1.4 117
Hessian - 17.2 6845

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary … 

 

646 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641 



brid DAE systems, but a novel class of non-smooth
DAEO systems can be defined, where the “O” denotes
optimization. The concept of the JADE prototype, i.e.
combining a high-level model language like Modelica
with algorithmic differentiation and tailored numeri-
cal solution methods, will be extended to the classes
of non-smooth DAE and DAEO systems.
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