
PySimulator – A Simulation and Analysis Environment in Python
with Plugin Infrastructure

A. Pfeiffer, M. Hellerer, S. Hartweg, M. Otter, M. Reiner
DLR Institute of System Dynamics and Control, Oberpfaffenhofen, Germany

{Andreas.Pfeiffer, Matthias.Hellerer, Stefan.Hartweg, Martin.Otter, Matthias.Reiner}@dlr.de

Abstract

A new simulation and analysis environment in Py-
thon is introduced. The environment provides a
graphical user interface for simulating different
model types (currently Functional Mockup Units and
Modelica Models), plotting result variables and ap-
plying simulation result analysis tools like Fast Fou-
rier Transform. Additionally advanced tools for line-
ar system analysis are provided that can be applied to
the automatically linearized models. The modular
concept of the software enables easy development of
further plugins for both simulation and analysis.
Keywords: PySimulator; Python; Simulator; FMI;
FMU; Modelica; Plugin; Simulation; Analysis; Lin-
ear System Analysis

1 Introduction

In this article the open source environment PySimu-
lator1 is introduced and its design is discussed. The
central idea is to provide a generic framework
• to perform simulations with different simulation

engines in a convenient way,
• organize the persistent storage of results,
• provide plotting and other post-processing fea-

ture such as signal processing or linear system
analysis, and

• export simulation and analysis results to other
environments.

1.1 Design

From an end-user’s point of view, PySimulator con-
sists of a convenient graphical user interface so that
all these operations can be defined mostly with the
mouse. This is similar to many other, usually com-
mercial, simulation environments.

1 PySimulator builds on other Python packages with dif-
ferent license conditions. The most restrictive used is
LGPL. Non-GUI functions are under the BSD license.

However, the major innovation is that PySimulator is
constructed as a plugin system: Nearly all operations
are defined as plugins with defined interfaces. Sever-
al useful plugins are already provided, but anyone
can extend this environment by his/her own plugins
and there is no formal difference to plugins already
provided by the authors of the paper.

Introducing a new plugin means to copy a template
and adapt it by writing Python code. Hereby it is
possible to build upon the results of other plugins
and provide own results to other plugins. All plugin
functionality available via the graphical user inter-
face shall also be easily accessible in Python scripts.
This will allow a modeler to define and automatical-
ly execute Python scripts.

1.2 Related Work

There are several existing Python packages that aim
to simulate dynamic systems of standardized physi-
cal models like Modelica or FMI [MC10]:
• The software package BuildingsPy [LBN+12]

provides functions in Python to start simulations
of Modelica models in Dymola [DS12]. Fur-
thermore the result file can be read to process the
signals.

• The OMPython package [GFR+12] interfaces
the OpenModelica environment with Python.
Hence, many functionalities of OpenModelica
can be controlled by Python scripts.

• The packages PyFMI and Assimulo [AAF+12]
provide Python interfaces for calling functions of
a general Functional Mock-Up Unit. Moreover,
sophisticated numerical integration algorithms
are interfaced or implemented in Assimulo. The
user mainly interacts with the packages by Py-
thon scripts. A graphical user interface for plot-
ting simulation results is currently available.

These packages concentrate the functionalities on a
specific type of model and simulation engine and do
not provide a wide range of post-processing features.

DOI Proceedings of the 9th International Modelica Conference 523
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

Also, the license conditions are partially restrictive
since, e.g., GPL is used. In the Python package index
(http://pypi.python.org) about 130 Python simulation
packages are listed. Most of these packages are dedi-
cated to the simulation of specific models (like neu-
ron networks, biological systems, discrete event sys-
tems) or are low level generic packages that require
to define a model as Python code (like Assimulo,
pyDDE, ScipySim).

2 Architecture and GUI

The environment PySimulator is implemented in
Python and depends on several Python packages.
The Graphical User Interface (GUI) is built by Py-
Side [P12], a Qt-Interface to Python. Plotting fea-
tures are realized by integrating Chaco [E12] into the
Qt [NC12] framework.

The main GUI of PySimulator (see Figure 1) has a
menu bar on the top, the Variable Browser, a plot-
ting area and an Information output window. The

menu bar shown in Figure 2 provides functionalities
for opening models, opening and conversion of result
files, running the simulation and starting analysis
tools. In the Variable Browser all models and simu-
lation results are managed to get access to the varia-
bles, their attributes and their numeric data. Struc-
tured plots show the numeric data in the plotting ar-
ea.

Figure 2: Menu bar of PySimulator GUI.

The environment is intended to provide features for
two kinds of users. In a first step the user interactive-
ly works with the graphical user interface by loading
models, simulating them, plotting variables, applying

Figure 1: Main Graphical User Interface of PySimulator.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

524 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

http://pypi.python.org/

analysis tools and inspecting the results. An ad-
vanced user can profit from Python’s scripting fea-
tures because it is possible to load, simulate and ana-
lyze models by API function calls in custom scripts.

The implemented software is structured as shown in
Figure 3. Some main modules are hosted in the top
level directory PySimulator. Under Plugins all code
and data of plugins is organized. Plugin interfaces
for model simulators and simulation analysis tools
are provided. This plugin concept leads to very mod-
ular software that can be easily extended by further
plugins. In the following subsections the main GUI
elements and the modular plugin structure are pre-
sented.

Figure 3: Main directory structure of PySimulator.

2.1 Model and Result Management

A central element of the PySimulator GUI is the
Variable Browser, see Figure 1. It can show several
variable trees of different models. Such a variable
tree is either generated by opening a simulation re-
sult file, or by opening a model. To open a model the
Simulator plugin has firstly to be selected in the
menu Open Model (see in Figure 2; for more details
see Section 3). Secondly the model file itself is to be
specified. Each top level item in the Variable Brows-

er has an ID number followed by a colon and the
name of the model. The ID number also marks vari-
ables uniquely in plot windows.

By selecting Open Result File the user can load a
result file of different formats into the Variable
Browser. In such a case there is no model to be simu-
lated and the item is displayed in grey color like
items number 3 and 6 in Figure 5. Currently two re-
sult formats are supported: the proposed standard
time series file format MTSF [PBO12] in HDF5, and
the binary format generated by Dymola’s [DS12]
simulation executable in Matlab 4 format [M12].

Figure 5: Top level items in the Variable Browser. Black
color: Model and result file; grey color: only result file.

For each top level item an information text window
(tool tip) is displayed when the user holds the mouse
pointer some moment over the name of the item. The
text informs about properties of the model. Its struc-
ture depends on the model type. An example for an
FMU [MC10] is displayed in Figure 4.

After opening a model the variable tree is construct-
ed according to the names of all model variables.
New tree branches are introduced by variable names
containing dots ‘.’ representing a hierarchy or
squared brackets ‘[‘, ‘]’ representing arrays. The unit

Figure 4: Variable Browser with information text (on the right) for the FMU model.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 525
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

of the variable is shown if there is any. The values of
independent parameters or the initial values of state
variables may be edited in the Variable Browser e.g.
for 1:clutch.cgeo or 1:clutch.fn_max. Further-
more, variables to be plotted can be defined before
the numerical integration starts. The attributes of
each variable depending on the model or result file
type can be displayed by opening the leaf in the vari-
able tree, e.g. for the variable 1:clutch.a_rel in
Figure 4.

During the numerical integration of a model a result
file is generated that is associated with the model. A
context menu Results for the top level items in the
Variable Browser informs about the associated result
file, see Figure 6. By selecting the context menu
Model one can close a model and the associated re-
sult file. Also, the user can duplicate a loaded model.
Each duplicate has its own top level item in the Vari-
able Browser like any other model. It is based on the
same model file (e.g. Friction.fmu or Friction.mo),
but has a separate result file, separate settings for the
numerical integration and separate values for param-
eters or initial values set before the numerical inte-
gration. For example, the top level item 5 in Figure 5
is a duplicate of model 2 (Rectifier model).

This approach has the advantage that comparing a
reference simulation with a tuning simulation of the
same original model is very easily possible. The user
just duplicates the reference version of the model and
experiments on the duplicate. The effects can be di-
rectly inspected in plots for the reference and the

tuned version of the model.

Figure 6: Standard context menus for a top level item in
the Variable Browser.

2.2 Plotting Features

Simulation data and analysis results must be pro-
cessed to make them comprehensible for humans. In
PySimulator, the data is visualized using graphical
plots. For this purpose PySimulator provides a plot-
ting framework, based on the 2D plotting library
Chaco [C12]. Chaco was chosen because it is com-
patible with the Qt/PySide UI-framework, it is li-
censed under the new BSD license, and it is a native
Python library. The last feature not only facilitates
the integration but also allows making full use of its
object oriented structure at all levels of the inher-
itance tree for manipulation and extendibility to fit
our needs. The primary advantage of Chaco and
what sets it apart from other plotting solutions for
Python lies in its focus on interactivity.

Plots are shown in a designated area within the main
window as shown in the upper right part of Figure 1.
Within this area plots can be arranged on a higher
level within tabs. The tabs are then subdivided into a

Figure 7: A plot widget displaying three variables, with a selected time interval and open context menu.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

526 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

grid in which the plots are arranged. To achieve all
this, a base class called PlotWidget was implemented
that acts as an adapter between Chaco and our appli-
cation or respectively Qt/PySide. All plots are sup-
posed to be implemented as extensions of this base
class.

Based on the Chaco framework and PlotWidget a
default plot widget (DefaultPlotWidget) for display-
ing a variable value over time was implemented
while paying special attention to the fact that future
plugin developers can both easily use the existing
material and still have access to Chaco’s full versatil-
ity. Marking a variable in the Variable Browser plots
the variable value over the time of the simulation in
the currently active plot, unmarking it removes the
plot line. An example of three variables of a simulat-
ed model plotted in a default plot widget can be seen
in Figure 7. The following features are based on de-
fault Chaco elements and can easily be used individ-
ually on any plot, specifically plots by plugins, either
out-of-the-box as described here or derived from
them to fit special needs:
• Panning: Left clicking and dragging within the

plot pans the view.
• Zooming: Turning the mouse wheel while hov-

ering over the plot zooms in and out. Hovering
over an axis only zooms along the respective
axis. Zooming and panning works very fast, and
is even reasonably fast with millions of points in
the plot window.

• Selecting: Left clicking and dragging on the X-
axis selects a time period. Double clicking the
axis opens a menu for textual input of selection
limits.

• Context menu: Right clicking on the plot opens
a context menu. In the DefaultPlotWidget it
shows callbacks for plugins.

• Marker: While hovering over one plot, the plot's
time stamp under the mouse is displayed as a
vertical line in this and all related plots.

Additionally, plots can be saved as images, either as
bitmaps in PNG format or as vector graphics in SVG
or PDF format.

2.3 Plugin Structure

Currently, infrastructure for two kinds of plugins is
available in PySimulator: Simulator and Analysis
plugins. The plugin interfaces are designed to easily
integrate own simulator and analysis code.

Simulator plugins are intended to provide the infra-
structure to simulate a certain kind of model and
write/read the result file of the simulation. In princi-
ple all types of simulation engines can be included,
provided time series are produced as results and var-
iables and parameters are identified with a hierar-
chical naming structure. Currently, plugins are avail-
able for FMUs [FC10], for Dymola [DS12], and for
OpenModelica [GFR+12].

The name of each Simulator plugin appears in the
main menu bar (Figure 2) under Open Model. To
include a Simulator plugin only the plugin code has
to be inserted in a new directory of
Plugins/Simulator, e.g. FMUSimulator in Figure 8.

Figure 8: Directory and main Python class structure for
plugins in PySimulator.

The main Python code of a Simulator plugin has to
be inside a class Model that is derived from the class
Plugins.Simulator.SimulatorBase.Model. Im-
portant variables, classes and function of the main
class Model are:
• modelType: String, e.g. ‘FMU1.0’, ‘Dymola’.
• integrationSettings: Class including start,

stop time, algorithm name, etc.
• integrationStatistics: Class including

number of events, grid points, elapsed real
time, etc.

• integrationResults: Class including result
file access.

• setVariableTree(): Function to generate da-
ta for a variable tree.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 527
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

• getAvailableIntegrationAlgorithms():
Function to get a list of available integration
algorithms.

• simulate(): Function to start the numerical
integration of the model.

• initialize(t): Function to initialize the
model.

• getDerivatives(t,x): Function to evaluate
the right hand side of the system.

• getEventIndicators(t,x): Function to
evaluate the event indicators (= switching
functions to detect events) of the system.

• getStates(): Function to get the values of all
continuous model states.

• getStateNames(): Function to get a list of all
names of the continuous model states.

• getValue(name): Function to retrieve the val-
ue of a certain variable.

For example, the file FMUSimulator.py has a Python
class Model that provides model typical methods and
data as listed for an FMU.

Analysis plugins provide functionality for analyzing
the model or result data in the post-processing stage
of a simulation. They contain functions which work
on variables, models and plots after a model is load-
ed or a simulation is finished. In order to integrate
the Analysis plugins, they are automatically loaded
by PySimulator from the Analysis folder. An initiali-
zation function is called for every plugin to enable
the initial setup, like declaration of variables or own
classes. The Analysis plugin is further able to regis-
ter callback functions in the main program which
allows access to the plugin’s functions. The call of a
plugin’s function from the GUI takes place by either
pull-down menus, a custom button bar or a context
menu appearing when the user clicks on an appropri-
ate GUI element like the model’s name.

For processing the data, the plugins can implement
own algorithms or use shared functionality stored in
the Algorithms folder. It is furthermore possible for
such a plugin to initialize a model or to start a simu-
lation, as this might be necessary for some function-
ality like linearization of the model. In this case, the
features of the Simulator plugins are utilized. The
feedback of the Analysis plugin can be sent to the
textual Information output window, a plot window or
stored in every other way Python allows, e.g. in a file
on disk.

It follows a simple example for an Analysis plugin to
find the maximum value of a time trajectory and plot
a label at the maximum point:

def findMax(widget):
 for plot in widget.plots:
 data = plot.data
 maxVal = data[0]
 for time, value in data:
 if value > maxVal[1]:
 maxVal = (time, value)
 maxLabel = DataLabel(
 component=plot,
 data_point=maxVal,
 label_format=str('(%(x)f, %(y)f)'))
 plot.overlays.append(maxLabel)

def getPlotCallbacks():
 return [["Find Maximum", findMax]]

3 Simulator Plugins

Figure 9: Integrator control GUI in PySimulator.

One of the main features of PySimulator is running
and controlling the numerical integration of different
types of models (= simulation). Those models re-
quire different simulation engines interfaced by the

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

528 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

Simulator plugins in PySimulator. All the Simulator
plugins are controlled by the same Integrator Control
GUI, see Figure 9. Some menu entries depend on
properties of the Simulator plugin.

Start and stop time for the integration may be edited
and one of the integration algorithms available for
the Simulator plugin can be selected. Depending on
the property of the algorithm the user can edit the
error tolerance or the fixed step size. The simulation
results are mainly discretized, time depending trajec-
tories. The discretization points (= grid points, dense
output points) of the time can be given either by the
number of equidistant grid points or by the width of
an equidistant time grid. A third option is to use the
steps of the integration algorithm for the grid points.
The name of the result file can also be specified. If
Plot online is selected in the GUI, the plots of the
simulation results are updated during the integration
process. This may increase the elapsed real time for
the integration, but gives information about the re-
sults at once. This feature is especially intended for
model simulations that take some time.

The simulation is run in a separate thread, so Varia-
ble Browser and Plot area are still available for user
interactions. During the numerical integration several
statistical parameters inform about the progress: cur-
rent simulation time, number of time and state
events, number of computed result points, the size of
the result file and the elapsed real time so far. In
some cases it is very helpful to see that for example
lots of events are generated and therefore the integra-
tion is getting stuck, or the result settings lead to a
huge result file and therefore the simulation is slow-
ing down.

3.1 FMU Simulator

The FMU simulator provides an interface to models
exported as a Functional Mockup Unit for Model
Exchange (FMU, see [MC10]). This interface is sup-
ported by more than 30 simulation environments
(www.functional-mockup-interface.org/tools.html).
An FMU is basically composed of two components:
Firstly, a description file in XML-format holds all
information about the variables of the model and
other model information. Secondly, binaries for one
or several target machines are contained, such as
Windows dynamic link libraries (.dll) or Linux
shared object libraries (.so). They contain the code
for evaluating the model’s equations.

This way, the FMU interface allows the evaluation
of the right hand side 𝑓 of the governing equations of
a model, as well as its outputs 𝑦 and its event indica-
tor signals 𝑧. They depend in generally on the mod-
el’s states 𝑥, its parameters 𝑝, inputs 𝑢 and the time
𝑡. Additionally, time events can be triggered by the
FMU. The event indicator signals are used to detect
state events, which may occur in many physical
models. With this information, it is possible for a
numerical integration solver to perform the time in-
tegration of the model to obtain a solution, see Fig-
ure 10.

The single steps performed by PySimulator are the
following. First, the XML description file of the se-
lected model is parsed. The information from this
file is visualized in the Variable Browser of the main
GUI. The Variable Browser can thus also be used
independently as an FMU description viewer.

Next, the Functional Mockup Interface (FMI) func-
tions in the shared library are interfaced to make
them available in PySimulator. This way, it is possi-
ble for the integrator to call the model functions.
While these parts are sufficient for some basic opera-
tions like initialization, the time integration itself
utilizes the Sundials Solver Suite [HBG05]. Sundials
provides solvers for explicit and implicit dynamical
systems: CVODE and IDA. CVODE numerically
integrates ordinary differential equations by linear
multistep methods. Depending on the solution
CVODE switches between solvers for stiff and non-
stiff problems. IDA uses BDF (Backwards Differen-
tiation Formulas) to solve systems of differential-
algebraic equations. Sundials supports root finding
during the numerical integration. In summary, the
Sundials solvers are prepared to be applied to FMUs.
The Sundials integrator suite is implemented in C
and is accessed from PySimulator via the python-
sundials [T12] interface.

Figure 10: Interface from the FMU model to the SUNDI-
ALS solver.

�̇� = 𝒇(𝒙,𝒑,𝒖, 𝑡)
𝒚 = 𝒈(𝒙,𝒑,𝒖, 𝑡)
𝒛 = 𝒉(𝒙,𝒑,𝒖, 𝑡)

FMU

t, u �̇�,𝒚, 𝒛 x

SUNDIALS Solver

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 529
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

http://www.functional-mockup-interface.org/tools.html

The FMU Simulator can be interfaced both by code
from e.g. an Analysis plugin as well as by the GUI
elements described in Section 3. In both cases the
important simulation parameters can be adjusted by
the user to the specific problem. After simulation, the
results are stored in the MTSF file format, the pro-
posed standard time series file format [PBO12] that
is based on HDF5 [THG12]. This format offers a way
to read and write variable information and numeric
data in a convenient and standardized way. The for-
mat is especially designed to support both small and
very large files. In [PBO12] MTSF files up to 200
GBytes have been generated and variables have been
read from the file. Most simulation programs do not
support generating and plotting result files of such a
size.

For example, a result file for the full robot model
from the Modelica Standard Library (FMU generated
by Dymola) is generated with 30 Mio. result points.
The result file has a size of 171 GΒytes. When plot-
ting signals from this file, the loaded signal is
downsampled to 5 Mio. points to get acceptable plot-
ting performance.

3.2 Dymola Simulator

The second Simulator plugin is based on the simula-
tion executable (dymosim[.exe]) generated by the
commercial Modelica environment Dymola [DS12]
from Dassault Systèmes. PySimulator supports se-
lecting a Modelica model by asking for the package
file and the model name. Then, the Modelica model
is automatically compiled by Dymola in the back-
ground if there is a version of Dymola installed. The
executable includes object code for both the model
equations and the numerical integration algorithms.

Figure 11: Variable tree in PySimulator based on Dymola’s
simulation executable.

The list of all variables and the values for editable
parameters and initial values are generated when

loading the model, see Figure 11 for an example. If
the user wants to start the numerical integration the
function model.simulate of the Dymola Simulator
plugin generates a new initialization file from the
integration settings in the Integrator Control GUI and
the changed parameters and initial values. After the-
se preparations the simulation executable is started.
During the numerical integration process the current
simulation time is read and displayed in the Integra-
tor Control GUI to be up to date about the simulation
progress.

The result file in Matlab’s 4 binary MAT-format can
be read by PySimulator. The corresponding result
object in PySimulator enables to get access to the
numeric data, the description string and the unit by a
Modelica variable name. A conversion of Dymola’s
result file (MAT) to the proposed Standard Time
Series File Format (MTSF) is supported by a sepa-
rate menu entry shown in Figure 2.

3.3 OpenModelica Simulator

A third Simulator plugin for PySimulator is shipped
with the open source OpenModelica environment.
Details about this plugin are given in [GFR+12].

4 Analysis Plugins

The result of a simulation mainly consists of time
series data that can be plotted. Signal processing
plugins can access the plot data, can extract more
information and can visualize it. Several simple
functionalities are already provided to compute min-
imum, maximum, and other signal properties in a
selectable time window. Furthermore, an involved
functionality is available to perform Fast Fourier
Transformations.

The nonlinear model of a Simulator plugin can be
linearized around the initialization point or another
time point of the simulation (provided the Simulator
plugin supports the required interface for linear
models). Afterwards, linear system analysis plugins
can operate on such a linear system. Already availa-
ble plugins compute and plot eigenvalues, provide
eigenmode analysis, and perform frequency and step
responses.

4.1 Signal Processing Plugin

The Signal Processing plugin provides operations on
result signals displayed in a plot window. When right
clicking on a plot window, together with an optional

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

530 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

selection of a time range, a window (see Figure 7)
pops up to select the desired signal processing opera-
tion on the selected time range.

Figure 12: Example for marking of a minimum.

An example of how the result of an operation is
shown in a plot is given in Figure 12, where the min-
imum of a signal is determined in the range 𝑡 ∈
[1.0, 2.7].

The operations to be carried out have the following
mathematical definition:

Name Operation on 𝒚(𝒕)
with

tmin ≤ t ≤ tmax, T = tmax − tmin
Minimum 𝑦𝑚𝑖𝑛 = min𝑦(𝑡)

Maximum y𝑚𝑎𝑥 = max𝑦(𝑡)

Arithmetic
Mean

𝑦𝐷𝐶 =
1
𝑇
∙ � 𝑦(𝑡)

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

Rectified
Mean

𝑦𝑅𝑀 =
1
𝑇
∙ � |𝑦(𝑡)|

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

Root
Mean
Square

𝑦𝑅𝑀𝑆 = �
1
𝑇
∙ � 𝑦(𝑡)2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

FFT

 𝑓𝑠 =
𝑛 − 1
𝑇

,

 𝑓 = �0,
𝑓𝑠
𝑛

,
2𝑓𝑠
𝑛

,⋯ ,
𝑓𝑠
2�

,

∆𝑦𝑟 = 𝑦(𝑡𝑟) − 𝑦𝐷𝐶 ,

𝑦𝐹𝐹𝑇,𝑘(𝑓𝑘) = 1
𝑛𝑓

� ∆𝑦𝑟

𝑛𝑓−1

𝑟=0

𝑒
−𝑖2𝜋𝑘 𝑟𝑛𝑓

The integrals in the operations are computed by us-
ing the trapezoidal integration rule on the selected
signal y (basically, the result points of y are linearly
interpolated and then exactly integrated).

The Fast Fourier Transform (FFT, [RKH10]) is used
to analyze which frequencies with which amplitudes

are contained in a periodic result signal. For this, a
complex vector yFFT is computed as function of a real
frequency vector f. Since an FFT requires equidistant
time points, the (potentially) non-equidistant result
points of a signal, y = y(t), are linearly interpolated
and mapped to an equidistant grid of the desired
number of points n. The frequency vector f consists
of nf = div(n,2) + 1 points. For even n, the last point
of vector f is fs/2, otherwise it is fs/2∙(n-1)/n (with fs =
(n-1)/T and T as the selected time range). The variant
of FFT is used, that subtracts the arithmetic mean of
y from the signal y itself and normalizes the FFT re-
sult with nf (in order that amplitudes of yFFT corre-
spond to the amplitudes in the underlying result sig-
nal).

The core FFT calculation is performed with Python
function numpy.fft.rfft which in turn is an inter-
face to the Fortran package fftpack [Swa82]. This
package computes the FFT of an equidistant vector y
of any length n in O(n2) and if n is expressed as a
multiple of 2, 3, 4, or 5, that is 𝑛 = 2𝑖3𝑗4𝑘5𝑙 in
O(n∙log(n)) operations. Note, the non-prime factor 4
gives a speed-up with respect to purely 2 factors
[Tem83].

A natural question is what number n to select. There
are two requirements: (1) all frequencies up to a de-
sired frequency should be included, and (2) the dis-
tance between two frequency points should be small
enough. With (1) the number of points n can be
computed as (T is the time range on which the FFT is
applied):

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2

=
𝑛 − 1

2𝑇
 → 𝑛 ≈ 2𝑇𝑓𝑚𝑎𝑥.

The distance d between two frequency points of vec-
tor f for an even number of n is computed as (for an
odd n the result is the same, but with a slightly dif-
ferent derivation):

𝑑 =
𝑓𝑚𝑎𝑥

𝑛𝑓 − 1
=

𝑓𝑠 2⁄
𝑛𝑓 − 1

=
𝑛 − 1

2𝑇
𝑛
2 + 1 − 1

=
1
𝑇
𝑛 − 1
𝑛

≈
1
𝑇

.

This means that the frequency resolution depends
only on the examined time interval T and can there-
fore only be enlarged by enlarging this interval (and
it is not related to the number of points used in the
FFT calculation). For example, if the base frequency
is f0 and the examined time interval T is over k peri-
ods of this base frequency, then the distance d is:

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 531
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

𝑑 =
1

𝑘 𝑓0⁄ =
𝑓0
𝑘

.

In other words, in order to get at least a resolution of
10 % of the base frequency, the examined time inter-
val should have at least a range of 10 base periods.

As a simple example consider the following addition
of two sines with different amplitudes (𝐴1 = 1,𝐴2 =
0.2) and frequencies (𝑓1 = 5,𝑓2 = 20):

𝑦(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡) + 𝐴2 sin(2𝜋𝑓2𝑡).

If 10 periods of 𝑓1 are analyzed, the FFT-plot up to
2𝑓2 (𝑛 ≈ 2 ∙ 10

5
∙ 40 + 1 → 𝑛 = 160) results in Fig-

ure 13.

Figure 13: FFT of example with n = 160.

As can be seen the 5 and 20 Hz frequencies are cor-
rectly identified with small errors in the amplitudes.
(the width of the plot bars are selected as 2 5 ∙ 𝑑⁄).
Extending the frequency range to 10𝑓2 does not
change the resolution (𝑑 = 5 10⁄ = 0.5 𝐻𝑧), but re-
duces the amplitude errors as seen in Figure 14.

Figure 14: FFT of example with n = 800.

4.2 Linear System Analysis Plugin

For many control applications it is necessary to have
a linear approximation of a nonlinear system. In ad-
dition a linear representation of a nonlinear system

can be helpful to analyze specific properties of the
system, for example local stability.

The Linear System Analysis plugin allows to auto-
matically linearize a model that is loaded into Py-
Simulator. If the plugin is loaded, its functionality
can be accessed by right-clicking a loaded model in
the GUI of PySimulator. If a loaded model is linear-
ized using the GUI the parameter set 𝑝 ∈ ℝ𝑛𝑝, as
defined in the Variable Browser is used for the line-
arization around the operating point. If it is called
from a Python-script, a set (Python dictionary) of
parameters and values can be used. A model (nonlin-
ear dynamic system) can be represented as a set of
equations:

�̇� = 𝑓(𝑥,𝑝,𝑢, 𝑡), 𝑥(𝑡0) = 𝑥0,
𝑦 = 𝑔(𝑥, 𝑝,𝑢, 𝑡).

For the plugin it is necessary that a set of inputs
𝑢 ∈ ℝ𝑛𝑢 and outputs 𝑦 ∈ ℝ𝑛𝑦 are defined in the
model, where 𝑛𝑢 ∈ ℕ is the number of inputs and
𝑛𝑦 ∈ ℕ is the number of outputs of the system.

The linearization procedure uses a numerical central
difference quotient for the calculation of the Jacobi-
ans. For a function 𝑞(𝑣) depending on a scalar 𝑣 we
use the approximation:

𝑞𝑣(𝑣) ≈
𝑞(𝑣 + 𝛿) − 𝑞(𝑣 − 𝛿)

2𝛿

with a step size 𝛿 = √𝜀3 max(|𝑣|, 1) and the ma-
chine precision 𝜀. The step size is computed to find a
compromise between a minimum discretization error
and a minimum numerical error.

The central difference quotient is successively ap-
plied to every component of 𝑥 and 𝑢 at a steady state
point 𝑤𝑠𝑠 ≔ (𝑥𝑠𝑠,𝑝,𝑢𝑠𝑠, 𝑡0). The linear approxima-
tion of the nonlinear system is a linear time invariant
(LTI) system that is represented by the matrices
𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥, 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢, 𝐶 ∈ ℝ𝑛𝑦×𝑛𝑥 and 𝐷 ∈
ℝ𝑛𝑦×𝑛𝑢:

𝐴 = 𝑓𝑥(𝑤𝑠𝑠), 𝐵 = 𝑓𝑢(𝑤𝑠𝑠),
𝐶 = 𝑔𝑥(𝑤𝑠𝑠), 𝐷 = 𝑔𝑢(𝑤𝑠𝑠).

The default case is 𝑥𝑠𝑠 ∶= 𝑥0 ∈ ℝ𝑛𝑥 and 𝑢𝑠𝑠 = 0. If
no user defined steady state point is given, 𝑥𝑠𝑠 is cal-
culated by calling the simulator’s initialization func-
tion. It is also possible to linearize around an arbi-
trary user-defined steady state 𝑥𝑠𝑠.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

532 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

The linear system is generated as an instance of a
Python class inside the Linear System Analysis
plugin, and can be accessed by other plugins inside
PySimulator for further analysis. The class provides
functions to return the matrices A, B, C, D, names
and sizes of the input, output and state vectors. In
addition it allows writing the matrices along with the
state, input and output names to a file in Matlab’s
MAT-format, see Figure 15, so that they can be di-
rectly used for controller synthesis inside Matlab
[M12].

Figure 16: Frequency responses of a 2x2 system.

Furthermore, the plugin provides various analysis
operations on the linear input/output system. Most
important, the frequency responses from the inputs to

the outputs are computed and plotted. An example of
the frequency responses of a system with 2 inputs
and 2 outputs is shown in Figure 16.

4.3 Eigenvalue Analysis Plugin

For the analysis of many systems, the eigenvalues
and eigenmodes are of special interest. They support
the understanding of the system by providing damp-
ing and frequency information when eigenmodes or
states are excited.

The Eigenvalue Analysis plugin needs the function-
ality to linearize a system as a starting point for fur-
ther analysis. For this, the Linear System Analysis
plugin from Section 4.2 is utilized. Βased on this,
functions for the visualization of both eigenvalues
and eigenmodes can be called, see Figure 17.

Figure 17: Menu of the Eigenvalue Analysis plugin.

The eigenvalues are plotted in the complex domain
as can be seen in Figure 18. This provides infor-
mation about the stability in the point of linearization
as well as about the dynamics of the corresponding
eigenmodes. When clicking with the left mouse but-
ton on an eigenvalue, additional information to this

Figure 15: Linear System Analysis plugin inside PySimulator.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 533
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

eigenvalue is displayed such as frequency, damping
and controllability.

Figure 18: Plot of eigenvalues and frequency response
with additional information.

The eigenmodes themselves can be visualized if the
model has been exported with an own visualization
routine. This is e.g. the case, if a Modelica model is
exported with the DLR Visualization library [Bel09].
The eigenmodes are a linear combination of the
model’s states. Therefore, they can be visualized if
the states have some form of visualization. The se-
lected eigenmodes, see Figure 19, are excited by a
periodic sine, making it possible to see their impact
on the system, not only in a figure, but in a dynamic
way.

Figure 19: GUI and animation of the 8th eigenmode, show-
ing a clear coupling of the flexible states.

The shown example is a mechanical model of a mul-
ti-robot cell of the DLR Center of Lightweight Pro-
duction Technology. The visualized Eigenmode 8
shows a clear coupling of the left and middle beam
due to the portal shown in the upper left part of the

figure. The GUI in Figure 20 shows some dynamic
properties which can also be seen in the eigenvalue
plot in Figure 18. As an additional possibility, the
user can furthermore visualize the states of the sys-
tem.

Figure 20: GUI to control the visualization of eigenmodes
and states.

The combination of the two abilities Plot Eigenval-
ues and Animate Eigenvectors/States enables the en-
gineer to understand and visualize the dynamics of
the system. This might help to adapt parameters of
the system to e.g. stabilize it or reduce the impact of
a periodic disturbance.

5 Algorithms

The algorithms used in the plugins are mostly based
on the standard Python packages numpy and scipy.
However, several new algorithms had to be imple-
mented that seemed to be not yet available in other
Python packages. These algorithms are provided un-
der directory Plugins/Algorithms. All functions in
this directory can be used also in any other context,
since there is no relationship to PySimulator (just
that plugins from PySimulator are calling these func-
tions). Especially, in this directory functions are pro-
vided for the Signal Processing and the Linear Sys-
tem Analysis plugins.

For example, class LTI in file Algorithms/Control/
lti.py provides various functions for multi-input-
multi-output Linear Time Invariant systems. In the
current version, two representations of continuous
linear systems are supported:

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

534 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

• LTI – State Space (derived by linearization
from the nonlinear model, see Section 4.2):

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡).

• LTI – Zeros and Poles:

𝑦(𝑠) = �
𝑔11 … 𝑔1𝑚
⋮ ⋱ ⋮
𝑔𝑛1 … 𝑔𝑛𝑚

� ∙ 𝑢(𝑠),

𝑔𝑖𝑗(𝑠) = 𝑘𝑖𝑗 ∙
∏ �𝑠 − 𝑧𝑖𝑗,𝑙�𝑙

∏ �𝑠 − 𝑝𝑖𝑗,𝑙�𝑙

 = 𝑘𝑖𝑗 ∙
∏ �𝑠 + 𝑛1,𝑖𝑗,𝑙�𝑙

∏ �𝑠 + 𝑑1,𝑖𝑗,𝑙�𝑙

 ∙
∏ �𝑠2 + 𝑛2,𝑖𝑗,𝑙𝑠 + 𝑛3,𝑖𝑗,𝑙�𝑙

∏ �𝑠2 + 𝑑2,𝑖𝑗,𝑙𝑠 + 𝑑3,𝑖𝑗,𝑙�𝑙

An LTI object is initialized by either defining a state
space representation with a tuple of matrices (A, B,
C, D), or by defining a zeros and poles representa-
tion by a matrix of tuples (k, z, p). Such a tuple is
defined with a gain 𝑘 ∈ ℝ, and z and p vectors of
real or conjugate complex zeros and poles. Internally
in the class, a second representation is computed and
stored consisting of first and second order transfer
functions described by coefficients 𝑛𝑞,𝑖𝑗,𝑙 , 𝑑𝑞,𝑖𝑗,𝑙 ∈
ℝ with 𝑞 = 1, 2, 3. Depending on the selected opera-
tion, one of the two representation forms is used to
perform the calculation. For example, evaluating a
zeros and poles object on a given s-value is per-
formed with the second representation form, since
then a real-valued s will result in a real-valued result.
Otherwise, due to numerical errors, the result might
be complex-valued.

Besides pure data, also meta-information can be as-
sociated to an LTI object, consisting of signal names,
units and description texts. When generating an LTI
object from the Linear System Analysis plugin, this
meta information is automatically generated from the
corresponding information stored in the underlying
model. When plotting or printing an LTI object, the
meta-information is utilized to improve the represen-
tation for the user.

Currently, only a few operations on LTI objects are
provided. Most importantly, a frequency response
object can be computed. If the LTI object is in a state
space representation, it is internally first transformed
to a zeros and poles object and this object is then
evaluated on the desired 𝑠 = 𝑗𝜔 values. By default,

these values are selected on a logarithmic scale and
the smallest and largest frequency values are de-
duced from the poles and zeros. The transformation
to zeros and poles form is performed in a numerical-
ly reliable way by computing the eigenvalues of A
and the generalized eigenvalues of (A, B, C, D) for
selected columns of B and selected rows of C and D.

6 Conclusions

PySimulator is provided as an open source environ-
ment to conveniently perform simulations with dif-
ferent simulation engines and to analyze the results
with a wide range of Analysis plugins. The environ-
ment has been designed to cope with large problems.
For example, result files with sizes larger than 100
GByte can be handled, as well as several million
points in one plot window. We hope that many other
people will contribute with Simulator and Analysis
plugins. We plan to include plugins from other de-
velopers in future PySimulator distributions, provid-
ed the plugin adds useful functionality, and the most
restrictive license used in the plugin is LGPL. The
copyright remains with the developers.

7 Acknowledgement

Important inputs for the design of the Simulator
plugin interfaces have been given by Anand Kalaiar-
asi Ganeson and Peter Fritzson (PELAB) during the
fruitful cooperation to integrate the OpenModelica
Simulator plugin into PySimulator.

References

[AAF+12] Andersson C., Andreasson, J., Führer C. and
Åkesson J.: A Workbench for Multibody
Systems ODE and DAE Solvers. In Proc. of
2nd Joint International Conference on
Multibody System Dynamics, Stuttgart,
Germany, 2012.

[Bel09] Bellmann T.: Interactive Simulations and
advanced Visualization with Modelica. Pro-
ceedings of 7th International Modelica Con-
ference, Como, Italy, Sep. 20-22, 2009.

[DS12] Dassault Systèmes AB: Dymola,
www.dymola.com.

[E12] Enthough, Inc.: Chaco.
code.enthought.com/chaco.

[GFR+12] Ganeson A. K., Fritzson P., Rogovchenko
O., Asghar A., Sjölund M. and Pfeiffer A.:
An OpenModelica Python Interface and its

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 535
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

http://www.dymola.com/
http://code.enthought.com/chaco

use in PySimulator. Accepted for publica-
tion in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[HBG05] Hindmarsh A. C., Brown P. N., Grant K. E.,
Lee S. L., Serban R., Shumaker D. E. and
Woodward C. S.: SUNDIALS: Suite of Non-
linear and Differential/Algebraic Equation
Solvers. ACM Transactions on Mathemati-
cal Software, 31(3), pp. 363-396, 2005.

[LBN+12] Lawrence Berkeley National Laboratory:
BuildingsPy. simulationrese-
arch.lbl.gov/modelica.

[M12] MathWorks: Matlab.
www.mathworks.com/products/matlab.

[MC10] MODELISAR consortium: Functional
Mock-up Interface for Model Exchange,
Version 1.0, 2010. www.functional-
mockup-interface.org.

[NC12] Nokia Corporation: Qt. www.qt.nokia.com.
[P12] PySide. www.pyside.org.
[PBO12] Pfeiffer A., Bausch-Gall I. and Otter M.:

Proposal for a Standard Time Series File
Format in HDF5. Accepted for publication
in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[RKH10] Rao K. R., Kim D. N. and Hwang J.-J.: Fast
Fourier Transform: Algorithms And Appli-
cations. Springer, Dordrecht, Heidelberg,
London, 2010.

[Swa82] Swarztrauber P.N.: Vectorizing the FFTs.
In: Parallel Computations, Ed. G. Rodrigue,
Academic Press, 1982, pp. 51-83.
www.netlib.org/fftpack

[T12] Tenfjord R.: Python-sundials.
www.code.google.com/p/python-sundials.

[Tem83] Temperton C.: Self-Sorting Mixed-Radix
Fast Fourier Transforms. Journal of Com-
putational Physics, 52, pp. 1-23, 1983.
www.sciencedirect.com/science/article/pii/0
02199918390013X.

[THG12] The HDF Group. www.hdfgroup.org.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

536 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

http://simulationresearch.lbl.gov/modelica
http://simulationresearch.lbl.gov/modelica
http://www.mathworks.com/products/matlab
http://www.functional-mockup-interface.org/
http://www.functional-mockup-interface.org/
http://www.qt.nokia.com/
http://www.pyside.org/
http://www.netlib.org/fftpack
http://www.code.google.com/p/python-sundials
http://www.sciencedirect.com/science/article/pii/002199918390013X
http://www.sciencedirect.com/science/article/pii/002199918390013X
http://www.hdfgroup.org/

	PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure
	Abstract
	1 Introduction
	1.1 Design
	1.2 Related Work

	2 Architecture and GUI
	2.1 Model and Result Management
	2.2 Plotting Features
	2.3 Plugin Structure

	3 Simulator Plugins
	3.1 FMU Simulator
	3.2 Dymola Simulator
	3.3 OpenModelica Simulator

	4 Analysis Plugins
	4.1 Signal Processing Plugin
	4.2 Linear System Analysis Plugin
	4.3 Eigenvalue Analysis Plugin

	5 Algorithms
	6 Conclusions
	7 Acknowledgement
	References

