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Abstract 

A new simulation and analysis environment in Py-
thon is introduced. The environment provides a 
graphical user interface for simulating different 
model types (currently Functional Mockup Units and 
Modelica Models), plotting result variables and ap-
plying simulation result analysis tools like Fast Fou-
rier Transform. Additionally advanced tools for line-
ar system analysis are provided that can be applied to 
the automatically linearized models. The modular 
concept of the software enables easy development of 
further plugins for both simulation and analysis. 
Keywords: PySimulator; Python; Simulator; FMI; 
FMU; Modelica; Plugin; Simulation; Analysis; Lin-
ear System Analysis 

1 Introduction 

In this article the open source environment PySimu-
lator1 is introduced and its design is discussed. The 
central idea is to provide a generic framework  
• to perform simulations with different simulation 

engines in a convenient way, 
• organize the persistent storage of results,  
• provide plotting and other post-processing fea-

ture such as signal processing or linear system 
analysis, and 

• export simulation and analysis results to other 
environments. 

1.1 Design 

From an end-user’s point of view, PySimulator con-
sists of a convenient graphical user interface so that 
all these operations can be defined mostly with the 
mouse. This is similar to many other, usually com-
mercial, simulation environments. 

                                                      
1 PySimulator builds on other Python packages with dif-
ferent license conditions. The most restrictive used is 
LGPL. Non-GUI functions are under the BSD license. 

However, the major innovation is that PySimulator is 
constructed as a plugin system: Nearly all operations 
are defined as plugins with defined interfaces. Sever-
al useful plugins are already provided, but anyone 
can extend this environment by his/her own plugins 
and there is no formal difference to plugins already 
provided by the authors of the paper. 

Introducing a new plugin means to copy a template 
and adapt it by writing Python code. Hereby it is 
possible to build upon the results of other plugins 
and provide own results to other plugins. All plugin 
functionality available via the graphical user inter-
face shall also be easily accessible in Python scripts. 
This will allow a modeler to define and automatical-
ly execute Python scripts. 

1.2 Related Work 

There are several existing Python packages that aim 
to simulate dynamic systems of standardized physi-
cal models like Modelica or FMI [MC10]:  
• The software package BuildingsPy [LBN+12] 

provides functions in Python to start simulations 
of Modelica models in Dymola [DS12]. Fur-
thermore the result file can be read to process the 
signals. 

• The OMPython package [GFR+12] interfaces 
the OpenModelica environment with Python. 
Hence, many functionalities of OpenModelica 
can be controlled by Python scripts. 

• The packages PyFMI and Assimulo [AAF+12] 
provide Python interfaces for calling functions of 
a general Functional Mock-Up Unit. Moreover, 
sophisticated numerical integration algorithms 
are interfaced or implemented in Assimulo. The 
user mainly interacts with the packages by Py-
thon scripts. A graphical user interface for plot-
ting simulation results is currently available. 

These packages concentrate the functionalities on a 
specific type of model and simulation engine and do 
not provide a wide range of post-processing features. 
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Also, the license conditions are partially restrictive 
since, e.g., GPL is used. In the Python package index 
(http://pypi.python.org) about 130 Python simulation 
packages are listed. Most of these packages are dedi-
cated to the simulation of specific models (like neu-
ron networks, biological systems, discrete event sys-
tems) or are low level generic packages that require 
to define a model as Python code (like Assimulo, 
pyDDE, ScipySim).  

2 Architecture and GUI 

The environment PySimulator is implemented in 
Python and depends on several Python packages. 
The Graphical User Interface (GUI) is built by Py-
Side [P12], a Qt-Interface to Python. Plotting fea-
tures are realized by integrating Chaco [E12] into the 
Qt [NC12] framework. 

The main GUI of PySimulator (see Figure 1) has a 
menu bar on the top, the Variable Browser, a plot-
ting area and an Information output window. The 

menu bar shown in Figure 2 provides functionalities 
for opening models, opening and conversion of result 
files, running the simulation and starting analysis 
tools. In the Variable Browser all models and simu-
lation results are managed to get access to the varia-
bles, their attributes and their numeric data. Struc-
tured plots show the numeric data in the plotting ar-
ea. 

 
Figure 2: Menu bar of PySimulator GUI. 

The environment is intended to provide features for 
two kinds of users. In a first step the user interactive-
ly works with the graphical user interface by loading 
models, simulating them, plotting variables, applying 

 

Figure 1: Main Graphical User Interface of PySimulator. 
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analysis tools and inspecting the results. An ad-
vanced user can profit from Python’s scripting fea-
tures because it is possible to load, simulate and ana-
lyze models by API function calls in custom scripts. 

The implemented software is structured as shown in 
Figure 3. Some main modules are hosted in the top 
level directory PySimulator. Under Plugins all code 
and data of plugins is organized. Plugin interfaces 
for model simulators and simulation analysis tools 
are provided. This plugin concept leads to very mod-
ular software that can be easily extended by further 
plugins. In the following subsections the main GUI 
elements and the modular plugin structure are pre-
sented. 

 
Figure 3: Main directory structure of PySimulator. 

2.1 Model and Result Management 

A central element of the PySimulator GUI is the 
Variable Browser, see Figure 1. It can show several 
variable trees of different models. Such a variable 
tree is either generated by opening a simulation re-
sult file, or by opening a model. To open a model the 
Simulator plugin has firstly to be selected in the 
menu Open Model (see in Figure 2; for more details 
see Section 3). Secondly the model file itself is to be 
specified. Each top level item in the Variable Brows-

er has an ID number followed by a colon and the 
name of the model. The ID number also marks vari-
ables uniquely in plot windows.  

By selecting Open Result File the user can load a 
result file of different formats into the Variable 
Browser. In such a case there is no model to be simu-
lated and the item is displayed in grey color like 
items number 3 and 6 in Figure 5. Currently two re-
sult formats are supported: the proposed standard 
time series file format MTSF [PBO12] in HDF5, and 
the binary format generated by Dymola’s [DS12] 
simulation executable in Matlab 4 format [M12]. 

 
Figure 5: Top level items in the Variable Browser. Black 
color: Model and result file; grey color: only result file. 

For each top level item an information text window 
(tool tip) is displayed when the user holds the mouse 
pointer some moment over the name of the item. The 
text informs about properties of the model. Its struc-
ture depends on the model type. An example for an 
FMU [MC10] is displayed in Figure 4. 

After opening a model the variable tree is construct-
ed according to the names of all model variables. 
New tree branches are introduced by variable names 
containing dots ‘.’ representing a hierarchy or 
squared brackets ‘[‘, ‘]’ representing arrays. The unit 

Figure 4: Variable Browser with information text (on the right) for the FMU model. 
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of the variable is shown if there is any. The values of 
independent parameters or the initial values of state 
variables may be edited in the Variable Browser e.g. 
for 1:clutch.cgeo or 1:clutch.fn_max. Further-
more, variables to be plotted can be defined before 
the numerical integration starts. The attributes of 
each variable depending on the model or result file 
type can be displayed by opening the leaf in the vari-
able tree, e.g. for the variable 1:clutch.a_rel in 
Figure 4. 

During the numerical integration of a model a result 
file is generated that is associated with the model. A 
context menu Results for the top level items in the 
Variable Browser informs about the associated result 
file, see Figure 6. By selecting the context menu 
Model one can close a model and the associated re-
sult file. Also, the user can duplicate a loaded model. 
Each duplicate has its own top level item in the Vari-
able Browser like any other model. It is based on the 
same model file (e.g. Friction.fmu or Friction.mo), 
but has a separate result file, separate settings for the 
numerical integration and separate values for param-
eters or initial values set before the numerical inte-
gration. For example, the top level item 5 in Figure 5 
is a duplicate of model 2 (Rectifier model). 

This approach has the advantage that comparing a 
reference simulation with a tuning simulation of the 
same original model is very easily possible. The user 
just duplicates the reference version of the model and 
experiments on the duplicate. The effects can be di-
rectly inspected in plots for the reference and the 

tuned version of the model. 

 
Figure 6: Standard context menus for a top level item in 
the Variable Browser. 

2.2 Plotting Features 

Simulation data and analysis results must be pro-
cessed to make them comprehensible for humans. In 
PySimulator, the data is visualized using graphical 
plots. For this purpose PySimulator provides a plot-
ting framework, based on the 2D plotting library 
Chaco [C12]. Chaco was chosen because it is com-
patible with the Qt/PySide UI-framework, it is li-
censed under the new BSD license, and it is a native 
Python library. The last feature not only facilitates 
the integration but also allows making full use of its 
object oriented structure at all levels of the inher-
itance tree for manipulation and extendibility to fit 
our needs. The primary advantage of Chaco and 
what sets it apart from other plotting solutions for 
Python lies in its focus on interactivity.  

Plots are shown in a designated area within the main 
window as shown in the upper right part of Figure 1. 
Within this area plots can be arranged on a higher 
level within tabs. The tabs are then subdivided into a 

 

Figure 7: A plot widget displaying three variables, with a selected time interval and open context menu. 
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grid in which the plots are arranged. To achieve all 
this, a base class called PlotWidget was implemented 
that acts as an adapter between Chaco and our appli-
cation or respectively Qt/PySide. All plots are sup-
posed to be implemented as extensions of this base 
class.  

Based on the Chaco framework and PlotWidget a 
default plot widget (DefaultPlotWidget) for display-
ing a variable value over time was implemented 
while paying special attention to the fact that future 
plugin developers can both easily use the existing 
material and still have access to Chaco’s full versatil-
ity. Marking a variable in the Variable Browser plots 
the variable value over the time of the simulation in 
the currently active plot, unmarking it removes the 
plot line. An example of three variables of a simulat-
ed model plotted in a default plot widget can be seen 
in Figure 7. The following features are based on de-
fault Chaco elements and can easily be used individ-
ually on any plot, specifically plots by plugins, either 
out-of-the-box as described here or derived from 
them to fit special needs: 
• Panning: Left clicking and dragging within the 

plot pans the view. 
• Zooming: Turning the mouse wheel while hov-

ering over the plot zooms in and out. Hovering 
over an axis only zooms along the respective 
axis. Zooming and panning works very fast, and 
is even reasonably fast with millions of points in 
the plot window. 

• Selecting: Left clicking and dragging on the X-
axis selects a time period. Double clicking the 
axis opens a menu for textual input of selection 
limits. 

• Context menu: Right clicking on the plot opens 
a context menu. In the DefaultPlotWidget it 
shows callbacks for plugins. 

• Marker: While hovering over one plot, the plot's 
time stamp under the mouse is displayed as a 
vertical line in this and all related plots.  

Additionally, plots can be saved as images, either as 
bitmaps in PNG format or as vector graphics in SVG 
or PDF format.  

2.3 Plugin Structure  

Currently, infrastructure for two kinds of plugins is 
available in PySimulator: Simulator and Analysis 
plugins. The plugin interfaces are designed to easily 
integrate own simulator and analysis code. 

Simulator plugins are intended to provide the infra-
structure to simulate a certain kind of model and 
write/read the result file of the simulation. In princi-
ple all types of simulation engines can be included, 
provided time series are produced as results and var-
iables and parameters are identified with a hierar-
chical naming structure. Currently, plugins are avail-
able for FMUs [FC10], for Dymola [DS12], and for 
OpenModelica [GFR+12]. 

The name of each Simulator plugin appears in the 
main menu bar (Figure 2) under Open Model. To 
include a Simulator plugin only the plugin code has 
to be inserted in a new directory of 
Plugins/Simulator, e.g. FMUSimulator in Figure 8. 

 
Figure 8: Directory and main Python class structure for 
plugins in PySimulator. 

The main Python code of a Simulator plugin has to 
be inside a class Model that is derived from the class 
Plugins.Simulator.SimulatorBase.Model. Im-
portant variables, classes and function of the main 
class Model are: 
• modelType: String, e.g. ‘FMU1.0’, ‘Dymola’. 
• integrationSettings: Class including start, 

stop time, algorithm name, etc. 
• integrationStatistics: Class including 

number of events, grid points, elapsed real 
time, etc. 

• integrationResults: Class including result 
file access. 

• setVariableTree(): Function to generate da-
ta for a variable tree. 
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• getAvailableIntegrationAlgorithms(): 
Function to get a list of available integration 
algorithms. 

• simulate(): Function to start the numerical 
integration of the model. 

• initialize(t): Function to initialize the 
model. 

• getDerivatives(t,x): Function to evaluate 
the right hand side of the system. 

• getEventIndicators(t,x): Function to 
evaluate the event indicators (= switching 
functions to detect events) of the system. 

• getStates(): Function to get the values of all 
continuous model states. 

• getStateNames(): Function to get a list of all 
names of the continuous model states. 

• getValue(name): Function to retrieve the val-
ue of a certain variable. 

For example, the file FMUSimulator.py has a Python 
class Model that provides model typical methods and 
data as listed for an FMU. 

Analysis plugins provide functionality for analyzing 
the model or result data in the post-processing stage 
of a simulation. They contain functions which work 
on variables, models and plots after a model is load-
ed or a simulation is finished. In order to integrate 
the Analysis plugins, they are automatically loaded 
by PySimulator from the Analysis folder. An initiali-
zation function is called for every plugin to enable 
the initial setup, like declaration of variables or own 
classes. The Analysis plugin is further able to regis-
ter callback functions in the main program which 
allows access to the plugin’s functions. The call of a 
plugin’s function from the GUI takes place by either 
pull-down menus, a custom button bar or a context 
menu appearing when the user clicks on an appropri-
ate GUI element like the model’s name. 

For processing the data, the plugins can implement 
own algorithms or use shared functionality stored in 
the Algorithms folder. It is furthermore possible for 
such a plugin to initialize a model or to start a simu-
lation, as this might be necessary for some function-
ality like linearization of the model. In this case, the 
features of the Simulator plugins are utilized. The 
feedback of the Analysis plugin can be sent to the 
textual Information output window, a plot window or 
stored in every other way Python allows, e.g. in a file 
on disk. 

It follows a simple example for an Analysis plugin to 
find the maximum value of a time trajectory and plot 
a label at the maximum point: 
 
def findMax(widget): 
  for plot in widget.plots: 
    data = plot.data 
    maxVal = data[0] 
    for time, value in data: 
      if value > maxVal[1]: 
        maxVal = (time, value) 
    maxLabel = DataLabel( 
       component=plot, 
       data_point=maxVal,                            
       label_format=str('(%(x)f, %(y)f)')) 
    plot.overlays.append(maxLabel) 
 
def getPlotCallbacks(): 
  return [["Find Maximum", findMax]] 

3 Simulator Plugins 

 
Figure 9: Integrator control GUI in PySimulator. 

One of the main features of PySimulator is running 
and controlling the numerical integration of different 
types of models (= simulation). Those models re-
quire different simulation engines interfaced by the 
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Simulator plugins in PySimulator. All the Simulator 
plugins are controlled by the same Integrator Control 
GUI, see Figure 9. Some menu entries depend on 
properties of the Simulator plugin. 

Start and stop time for the integration may be edited 
and one of the integration algorithms available for 
the Simulator plugin can be selected. Depending on 
the property of the algorithm the user can edit the 
error tolerance or the fixed step size. The simulation 
results are mainly discretized, time depending trajec-
tories. The discretization points (= grid points, dense 
output points) of the time can be given either by the 
number of equidistant grid points or by the width of 
an equidistant time grid. A third option is to use the 
steps of the integration algorithm for the grid points. 
The name of the result file can also be specified. If 
Plot online is selected in the GUI, the plots of the 
simulation results are updated during the integration 
process. This may increase the elapsed real time for 
the integration, but gives information about the re-
sults at once. This feature is especially intended for 
model simulations that take some time. 

The simulation is run in a separate thread, so Varia-
ble Browser and Plot area are still available for user 
interactions. During the numerical integration several 
statistical parameters inform about the progress: cur-
rent simulation time, number of time and state 
events, number of computed result points, the size of 
the result file and the elapsed real time so far. In 
some cases it is very helpful to see that for example 
lots of events are generated and therefore the integra-
tion is getting stuck, or the result settings lead to a 
huge result file and therefore the simulation is slow-
ing down. 

3.1 FMU Simulator 

The FMU simulator provides an interface to models 
exported as a Functional Mockup Unit for Model 
Exchange (FMU, see [MC10]). This interface is sup-
ported by more than 30 simulation environments 
(www.functional-mockup-interface.org/tools.html). 
An FMU is basically composed of two components: 
Firstly, a description file in XML-format holds all 
information about the variables of the model and 
other model information. Secondly, binaries for one 
or several target machines are contained, such as 
Windows dynamic link libraries (.dll) or Linux 
shared object libraries (.so). They contain the code 
for evaluating the model’s equations.  

This way, the FMU interface allows the evaluation 
of the right hand side 𝑓 of the governing equations of 
a model, as well as its outputs 𝑦 and its event indica-
tor signals 𝑧. They depend in generally on the mod-
el’s states 𝑥, its parameters 𝑝, inputs 𝑢 and the time 
𝑡. Additionally, time events can be triggered by the 
FMU. The event indicator signals are used to detect 
state events, which may occur in many physical 
models. With this information, it is possible for a 
numerical integration solver to perform the time in-
tegration of the model to obtain a solution, see Fig-
ure 10. 

The single steps performed by PySimulator are the 
following. First, the XML description file of the se-
lected model is parsed. The information from this 
file is visualized in the Variable Browser of the main 
GUI. The Variable Browser can thus also be used 
independently as an FMU description viewer.  

Next, the Functional Mockup Interface (FMI) func-
tions in the shared library are interfaced to make 
them available in PySimulator. This way, it is possi-
ble for the integrator to call the model functions. 
While these parts are sufficient for some basic opera-
tions like initialization, the time integration itself 
utilizes the Sundials Solver Suite [HBG05]. Sundials 
provides solvers for explicit and implicit dynamical 
systems: CVODE and IDA. CVODE numerically 
integrates ordinary differential equations by linear 
multistep methods. Depending on the solution 
CVODE switches between solvers for stiff and non-
stiff problems. IDA uses BDF (Backwards Differen-
tiation Formulas) to solve systems of differential-
algebraic equations. Sundials supports root finding 
during the numerical integration. In summary, the 
Sundials solvers are prepared to be applied to FMUs. 
The Sundials integrator suite is implemented in C 
and is accessed from PySimulator via the python-
sundials [T12] interface. 

Figure 10: Interface from the FMU model to the SUNDI-
ALS solver. 

�̇� = 𝒇(𝒙,𝒑,𝒖, 𝑡) 
𝒚 = 𝒈(𝒙,𝒑,𝒖, 𝑡) 
𝒛 = 𝒉(𝒙,𝒑,𝒖, 𝑡) 

FMU 

 

t, u �̇�,𝒚, 𝒛 x 

SUNDIALS Solver 
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The FMU Simulator can be interfaced both by code 
from e.g. an Analysis plugin as well as by the GUI 
elements described in Section 3. In both cases the 
important simulation parameters can be adjusted by 
the user to the specific problem. After simulation, the 
results are stored in the MTSF file format, the pro-
posed standard time series file format [PBO12] that 
is based on HDF5 [THG12]. This format offers a way 
to read and write variable information and numeric 
data in a convenient and standardized way. The for-
mat is especially designed to support both small and 
very large files. In [PBO12] MTSF files up to 200 
GBytes have been generated and variables have been 
read from the file. Most simulation programs do not 
support generating and plotting result files of such a 
size.  

For example, a result file for the full robot model 
from the Modelica Standard Library (FMU generated 
by Dymola) is generated with 30 Mio. result points. 
The result file has a size of 171 GΒytes. When plot-
ting signals from this file, the loaded signal is 
downsampled to 5 Mio. points to get acceptable plot-
ting performance. 

3.2 Dymola Simulator 

The second Simulator plugin is based on the simula-
tion executable (dymosim[.exe]) generated by the 
commercial Modelica environment Dymola [DS12] 
from Dassault Systèmes. PySimulator supports se-
lecting a Modelica model by asking for the package 
file and the model name. Then, the Modelica model 
is automatically compiled by Dymola in the back-
ground if there is a version of Dymola installed. The 
executable includes object code for both the model 
equations and the numerical integration algorithms. 

 
Figure 11: Variable tree in PySimulator based on Dymola’s 
simulation executable. 

The list of all variables and the values for editable 
parameters and initial values are generated when 

loading the model, see Figure 11 for an example. If 
the user wants to start the numerical integration the 
function model.simulate of the Dymola Simulator 
plugin generates a new initialization file from the 
integration settings in the Integrator Control GUI and 
the changed parameters and initial values. After the-
se preparations the simulation executable is started. 
During the numerical integration process the current 
simulation time is read and displayed in the Integra-
tor Control GUI to be up to date about the simulation 
progress. 

The result file in Matlab’s 4 binary MAT-format can 
be read by PySimulator. The corresponding result 
object in PySimulator enables to get access to the 
numeric data, the description string and the unit by a 
Modelica variable name. A conversion of Dymola’s 
result file (MAT) to the proposed Standard Time 
Series File Format (MTSF) is supported by a sepa-
rate menu entry shown in Figure 2. 

3.3 OpenModelica Simulator 

A third Simulator plugin for PySimulator is shipped 
with the open source OpenModelica environment. 
Details about this plugin are given in [GFR+12]. 

4 Analysis Plugins 

The result of a simulation mainly consists of time 
series data that can be plotted. Signal processing 
plugins can access the plot data, can extract more 
information and can visualize it. Several simple 
functionalities are already provided to compute min-
imum, maximum, and other signal properties in a 
selectable time window. Furthermore, an involved 
functionality is available to perform Fast Fourier 
Transformations.  

The nonlinear model of a Simulator plugin can be 
linearized around the initialization point or another 
time point of the simulation (provided the Simulator 
plugin supports the required interface for linear 
models). Afterwards, linear system analysis plugins 
can operate on such a linear system. Already availa-
ble plugins compute and plot eigenvalues, provide 
eigenmode analysis, and perform frequency and step 
responses. 

4.1 Signal Processing Plugin 

The Signal Processing plugin provides operations on 
result signals displayed in a plot window. When right 
clicking on a plot window, together with an optional 
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selection of a time range, a window (see Figure 7) 
pops up to select the desired signal processing opera-
tion on the selected time range. 

 
Figure 12: Example for marking of a minimum. 

An example of how the result of an operation is 
shown in a plot is given in Figure 12, where the min-
imum of a signal is determined in the range 𝑡 ∈
[1.0, 2.7]. 

The operations to be carried out have the following 
mathematical definition: 

Name Operation on 𝒚(𝒕) 
with 

tmin ≤ t ≤ tmax, T =  tmax −  tmin 
Minimum 𝑦𝑚𝑖𝑛 =  min𝑦(𝑡) 

Maximum y𝑚𝑎𝑥 =  max𝑦(𝑡) 

Arithmetic 
Mean 

𝑦𝐷𝐶 =
1
𝑇
∙ � 𝑦(𝑡)

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

Rectified 
Mean 

𝑦𝑅𝑀 =
1
𝑇
∙ � |𝑦(𝑡)|

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

Root 
Mean 
Square 

𝑦𝑅𝑀𝑆 =  �
1
𝑇
∙ � 𝑦(𝑡)2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

FFT 

               𝑓𝑠 =
𝑛 − 1
𝑇

,

                𝑓 = �0,
𝑓𝑠
𝑛

,
2𝑓𝑠
𝑛

,⋯ ,
𝑓𝑠
2�

,

∆𝑦𝑟 = 𝑦(𝑡𝑟) − 𝑦𝐷𝐶 ,

𝑦𝐹𝐹𝑇,𝑘(𝑓𝑘) = 1
𝑛𝑓

� ∆𝑦𝑟

𝑛𝑓−1

𝑟=0

𝑒
−𝑖2𝜋𝑘 𝑟𝑛𝑓

 

The integrals in the operations are computed by us-
ing the trapezoidal integration rule on the selected 
signal y (basically, the result points of y are linearly 
interpolated and then exactly integrated). 

The Fast Fourier Transform (FFT, [RKH10]) is used 
to analyze which frequencies with which amplitudes 

are contained in a periodic result signal. For this, a 
complex vector yFFT is computed as function of a real 
frequency vector f. Since an FFT requires equidistant 
time points, the (potentially) non-equidistant result 
points of a signal, y = y(t), are linearly interpolated 
and mapped to an equidistant grid of the desired 
number of points n. The frequency vector f consists 
of nf  = div(n,2) + 1 points. For even n, the last point 
of vector f is fs/2, otherwise it is fs/2∙(n-1)/n (with fs = 
(n-1)/T and T as the selected time range). The variant 
of FFT is used, that subtracts the arithmetic mean of 
y from the signal y itself and normalizes the FFT re-
sult with nf (in order that amplitudes of yFFT corre-
spond to the amplitudes in the underlying result sig-
nal). 

The core FFT calculation is performed with Python 
function numpy.fft.rfft which in turn is an inter-
face to the Fortran package fftpack [Swa82]. This 
package computes the FFT of an equidistant vector y 
of any length n in O(n2) and if n is expressed as a 
multiple of 2, 3, 4, or 5, that is 𝑛 = 2𝑖3𝑗4𝑘5𝑙 in 
O(n∙log(n)) operations. Note, the non-prime factor 4 
gives a speed-up with respect to purely 2 factors 
[Tem83]. 

A natural question is what number n to select. There 
are two requirements: (1) all frequencies up to a de-
sired frequency should be included, and (2) the dis-
tance between two frequency points should be small 
enough. With (1) the number of points n can be 
computed as (T is the time range on which the FFT is 
applied): 

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2

=
𝑛 − 1

2𝑇
  →   𝑛 ≈  2𝑇𝑓𝑚𝑎𝑥. 

The distance d between two frequency points of vec-
tor f for an even number of n is computed as (for an 
odd n the result is the same, but with a slightly dif-
ferent derivation): 

𝑑 =
𝑓𝑚𝑎𝑥

𝑛𝑓 − 1
=

𝑓𝑠 2⁄
𝑛𝑓 − 1

=
𝑛 − 1

2𝑇
𝑛
2 + 1 − 1

=
1
𝑇
𝑛 − 1
𝑛

≈
1
𝑇

. 

This means that the frequency resolution depends 
only on the examined time interval T and can there-
fore only be enlarged by enlarging this interval (and 
it is not related to the number of points used in the 
FFT calculation). For example, if the base frequency 
is f0 and the examined time interval T is over k peri-
ods of this base frequency, then the distance d is: 
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𝑑 =
1

𝑘 𝑓0⁄ =
𝑓0
𝑘

. 

In other words, in order to get at least a resolution of 
10 % of the base frequency, the examined time inter-
val should have at least a range of 10 base periods. 

As a simple example consider the following addition 
of two sines with different amplitudes (𝐴1 = 1,𝐴2 =
0.2) and frequencies (𝑓1 = 5,𝑓2 = 20): 

𝑦(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡) + 𝐴2 sin(2𝜋𝑓2𝑡). 

If 10 periods of 𝑓1 are analyzed, the FFT-plot up to 
2𝑓2 (𝑛 ≈ 2 ∙ 10

5
∙ 40 + 1 → 𝑛 = 160) results in Fig-

ure 13. 

 
Figure 13: FFT of example with n = 160. 

As can be seen the 5 and 20 Hz frequencies are cor-
rectly identified with small errors in the amplitudes. 
(the width of the plot bars are selected as 2 5 ∙ 𝑑⁄ ). 
Extending the frequency range to 10𝑓2 does not 
change the resolution (𝑑 = 5 10⁄ = 0.5 𝐻𝑧), but re-
duces the amplitude errors as seen in Figure 14. 

 
Figure 14: FFT of example with n = 800. 

4.2 Linear System Analysis Plugin 

For many control applications it is necessary to have 
a linear approximation of a nonlinear system. In ad-
dition a linear representation of a nonlinear system 

can be helpful to analyze specific properties of the 
system, for example local stability. 

The Linear System Analysis plugin allows to auto-
matically linearize a model that is loaded into Py-
Simulator. If the plugin is loaded, its functionality 
can be accessed by right-clicking a loaded model in 
the GUI of PySimulator. If a loaded model is linear-
ized using the GUI the parameter set 𝑝 ∈ ℝ𝑛𝑝, as 
defined in the Variable Browser is used for the line-
arization around the operating point. If it is called 
from a Python-script, a set (Python dictionary) of 
parameters and values can be used. A model (nonlin-
ear dynamic system) can be represented as a set of 
equations: 

�̇� = 𝑓(𝑥,𝑝,𝑢, 𝑡), 𝑥(𝑡0) = 𝑥0, 
𝑦 = 𝑔(𝑥, 𝑝,𝑢, 𝑡). 

For the plugin it is necessary that a set of inputs 
𝑢 ∈ ℝ𝑛𝑢 and outputs 𝑦 ∈ ℝ𝑛𝑦 are defined in the 
model, where 𝑛𝑢 ∈ ℕ is the number of inputs and 
𝑛𝑦 ∈ ℕ is the number of outputs of the system. 

The linearization procedure uses a numerical central 
difference quotient for the calculation of the Jacobi-
ans. For a function 𝑞(𝑣) depending on a scalar 𝑣 we 
use the approximation: 

𝑞𝑣(𝑣) ≈
𝑞(𝑣 + 𝛿) − 𝑞(𝑣 − 𝛿)

2𝛿
 

with a step size 𝛿 =  √𝜀3 max(|𝑣|, 1) and the ma-
chine precision 𝜀. The step size is computed to find a 
compromise between a minimum discretization error 
and a minimum numerical error. 

The central difference quotient is successively ap-
plied to every component of 𝑥 and 𝑢 at a steady state 
point 𝑤𝑠𝑠 ≔ (𝑥𝑠𝑠,𝑝,𝑢𝑠𝑠, 𝑡0). The linear approxima-
tion of the nonlinear system is a linear time invariant 
(LTI) system that is represented by the matrices 
𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥, 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢, 𝐶 ∈ ℝ𝑛𝑦×𝑛𝑥 and 𝐷 ∈
ℝ𝑛𝑦×𝑛𝑢: 

𝐴 = 𝑓𝑥(𝑤𝑠𝑠), 𝐵 = 𝑓𝑢(𝑤𝑠𝑠),  
𝐶 = 𝑔𝑥(𝑤𝑠𝑠), 𝐷 = 𝑔𝑢(𝑤𝑠𝑠). 

The default case is 𝑥𝑠𝑠 ∶= 𝑥0 ∈ ℝ𝑛𝑥 and 𝑢𝑠𝑠 = 0. If 
no user defined steady state point is given, 𝑥𝑠𝑠 is cal-
culated by calling the simulator’s initialization func-
tion. It is also possible to linearize around an arbi-
trary user-defined steady state 𝑥𝑠𝑠. 
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The linear system is generated as an instance of a 
Python class inside the Linear System Analysis 
plugin, and can be accessed by other plugins inside 
PySimulator for further analysis. The class provides 
functions to return the matrices A, B, C, D, names 
and sizes of the input, output and state vectors. In 
addition it allows writing the matrices along with the 
state, input and output names to a file in Matlab’s 
MAT-format, see Figure 15, so that they can be di-
rectly used for controller synthesis inside Matlab 
[M12]. 

 
Figure 16: Frequency responses of a 2x2 system. 

Furthermore, the plugin provides various analysis 
operations on the linear input/output system. Most 
important, the frequency responses from the inputs to 

the outputs are computed and plotted. An example of 
the frequency responses of a system with 2 inputs 
and 2 outputs is shown in Figure 16. 

4.3 Eigenvalue Analysis Plugin 

For the analysis of many systems, the eigenvalues 
and eigenmodes are of special interest. They support 
the understanding of the system by providing damp-
ing and frequency information when eigenmodes or 
states are excited. 

The Eigenvalue Analysis plugin needs the function-
ality to linearize a system as a starting point for fur-
ther analysis. For this, the Linear System Analysis 
plugin from Section 4.2 is utilized. Βased on this, 
functions for the visualization of both eigenvalues 
and eigenmodes can be called, see Figure 17. 

 
Figure 17: Menu of the Eigenvalue Analysis plugin. 

The eigenvalues are plotted in the complex domain 
as can be seen in Figure 18. This provides infor-
mation about the stability in the point of linearization 
as well as about the dynamics of the corresponding 
eigenmodes. When clicking with the left mouse but-
ton on an eigenvalue, additional information to this 

 

Figure 15: Linear System Analysis plugin inside PySimulator. 
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eigenvalue is displayed such as frequency, damping 
and controllability. 
 

 
Figure 18: Plot of eigenvalues and frequency response 
with additional information. 

The eigenmodes themselves can be visualized if the 
model has been exported with an own visualization 
routine. This is e.g. the case, if a Modelica model is 
exported with the DLR Visualization library [Bel09]. 
The eigenmodes are a linear combination of the 
model’s states. Therefore, they can be visualized if 
the states have some form of visualization. The se-
lected eigenmodes, see Figure 19, are excited by a 
periodic sine, making it possible to see their impact 
on the system, not only in a figure, but in a dynamic 
way. 

 
Figure 19: GUI and animation of the 8th eigenmode, show-
ing a clear coupling of the flexible states. 

The shown example is a mechanical model of a mul-
ti-robot cell of the DLR Center of Lightweight Pro-
duction Technology. The visualized Eigenmode 8 
shows a clear coupling of the left and middle beam 
due to the portal shown in the upper left part of the 

figure. The GUI in Figure 20 shows some dynamic 
properties which can also be seen in the eigenvalue 
plot in Figure 18. As an additional possibility, the 
user can furthermore visualize the states of the sys-
tem.   

 
Figure 20: GUI to control the visualization of eigenmodes 
and states. 

The combination of the two abilities Plot Eigenval-
ues and Animate Eigenvectors/States enables the en-
gineer to understand and visualize the dynamics of 
the system. This might help to adapt parameters of 
the system to e.g. stabilize it or reduce the impact of 
a periodic disturbance. 

5 Algorithms 

The algorithms used in the plugins are mostly based 
on the standard Python packages numpy and scipy. 
However, several new algorithms had to be imple-
mented that seemed to be not yet available in other 
Python packages. These algorithms are provided un-
der directory Plugins/Algorithms. All functions in 
this directory can be used also in any other context, 
since there is no relationship to PySimulator (just 
that plugins from PySimulator are calling these func-
tions). Especially, in this directory functions are pro-
vided for the Signal Processing and the Linear Sys-
tem Analysis plugins. 

For example, class LTI in file Algorithms/Control/ 
lti.py provides various functions for multi-input-
multi-output Linear Time Invariant systems. In the 
current version, two representations of continuous 
linear systems are supported: 
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• LTI – State Space (derived by linearization 
from the nonlinear model, see Section 4.2): 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). 

• LTI – Zeros and Poles:  

𝑦(𝑠) = �
𝑔11 … 𝑔1𝑚
⋮ ⋱ ⋮
𝑔𝑛1 … 𝑔𝑛𝑚

� ∙ 𝑢(𝑠), 

𝑔𝑖𝑗(𝑠) = 𝑘𝑖𝑗 ∙
∏ �𝑠 − 𝑧𝑖𝑗,𝑙�𝑙

∏ �𝑠 − 𝑝𝑖𝑗,𝑙�𝑙
 

             = 𝑘𝑖𝑗 ∙
∏ �𝑠 + 𝑛1,𝑖𝑗,𝑙�𝑙

∏ �𝑠 + 𝑑1,𝑖𝑗,𝑙�𝑙
 

                        ∙
∏ �𝑠2 + 𝑛2,𝑖𝑗,𝑙𝑠 + 𝑛3,𝑖𝑗,𝑙�𝑙

∏ �𝑠2 + 𝑑2,𝑖𝑗,𝑙𝑠 + 𝑑3,𝑖𝑗,𝑙�𝑙
 

An LTI object is initialized by either defining a state 
space representation with a tuple of matrices (A, B, 
C, D), or by defining a zeros and poles representa-
tion by a matrix of tuples (k, z, p). Such a tuple is 
defined with a gain 𝑘 ∈ ℝ, and z and p vectors of 
real or conjugate complex zeros and poles. Internally 
in the class, a second representation is computed and 
stored consisting of first and second order transfer 
functions described by coefficients 𝑛𝑞,𝑖𝑗,𝑙 , 𝑑𝑞,𝑖𝑗,𝑙 ∈
ℝ with 𝑞 = 1, 2, 3. Depending on the selected opera-
tion, one of the two representation forms is used to 
perform the calculation. For example, evaluating a 
zeros and poles object on a given s-value is per-
formed with the second representation form, since 
then a real-valued s will result in a real-valued result. 
Otherwise, due to numerical errors, the result might 
be complex-valued. 

Besides pure data, also meta-information can be as-
sociated to an LTI object, consisting of signal names, 
units and description texts. When generating an LTI 
object from the Linear System Analysis plugin, this 
meta information is automatically generated from the 
corresponding information stored in the underlying 
model. When plotting or printing an LTI object, the 
meta-information is utilized to improve the represen-
tation for the user. 

Currently, only a few operations on LTI objects are 
provided. Most importantly, a frequency response 
object can be computed. If the LTI object is in a state 
space representation, it is internally first transformed 
to a zeros and poles object and this object is then 
evaluated on the desired 𝑠 = 𝑗𝜔 values. By default, 

these values are selected on a logarithmic scale and 
the smallest and largest frequency values are de-
duced from the poles and zeros. The transformation 
to zeros and poles form is performed in a numerical-
ly reliable way by computing the eigenvalues of A 
and the generalized eigenvalues of (A, B, C, D) for 
selected columns of B and selected rows of C and D. 

6 Conclusions 

PySimulator is provided as an open source environ-
ment to conveniently perform simulations with dif-
ferent simulation engines and to analyze the results 
with a wide range of Analysis plugins. The environ-
ment has been designed to cope with large problems. 
For example, result files with sizes larger than 100 
GByte can be handled, as well as several million 
points in one plot window. We hope that many other 
people will contribute with Simulator and Analysis 
plugins. We plan to include plugins from other de-
velopers in future PySimulator distributions, provid-
ed the plugin adds useful functionality, and the most 
restrictive license used in the plugin is LGPL. The 
copyright remains with the developers. 
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