
Proposal for a Standard Time Series File Format in HDF5

A. Pfeiffer1, I. Bausch-Gall2, M. Otter1
1DLR Institute of System Dynamics and Control, Oberpfaffenhofen, Germany

2BAUSCH-GALL GmbH, Munich, Germany
Andreas.Pfeiffer@dlr.de, Ingrid.Bausch-Gall@bausch-gall.de, Martin.Otter@dlr.de

Abstract
This paper describes a proposal for a standard to
store the results of dynamic systems simulations in
form of time series data persistently on file. The rea-
sons to develop such a standard are explained, as
well as the decision to use the HDF5 file format as a
basis. The meta-information to be stored on file is
mainly deduced from the Functional Mockup Inter-
face standard. Two variants are analyzed: Storing the
meta-data either with a set of tables or in a hierarchy.
Usability and performance measurements are utilized
for the selection.

Keywords: Simulation Results; File Format; Time
Series; Standard; HDF5; MTSF, FMI

1 Introduction
Many simulation programs store their simulation
results in an own specific file format. However,
modelers have to utilize simulation results from dif-
ferent tools in different ways, e.g. plotting in compa-
ny specific formats, comparing the data with results
from another simulation program or computing FFTs
(Fast Fourier Transforms). Since often one tool is not
suited for all these tasks, users or tool vendors have
to implement API functions to access the result data
from other programs. This is time consuming and
has to be adapted when the format changes. Every
program stores different information. Some store
only the results, other more information such as units
and names of signals. Many programs provide an
open export of ASCII or CSV files, which makes
data access easy. However, information supplied in
these formats is not complete, reading the files is
inefficient and storing and retrieving large amounts
of data is not practical.

These issues exist since decades for almost all simu-
lators in many physical domains. Many simulators
offer a more or less mighty environment for result
evaluation. But this is not their main development
goal. Scripting tools such as Matlab [M12], Scilab
[TSC12] or Python [P12a] are better suited to auto-
mate plotting of results with fine control of the lay-
out, to generate standardized result evaluation re-

ports, to perform signal processing (e.g. FFT), to
compare with measurements, to run Monte Carlo
simulations, or to perform optimizations over many
simulations etc. The basic problem is then how to
connect a simulation with a scripting environment.
With a standardized time series file format, the ap-
proach from Figure 1 simplifies the task a lot, since
simulation environments could generate files in this
format and scripting tools could read files in this
format directly.

Figure 1: Standard time series file format and its interac-
tion with tools.

In 2010, version 1.0 of the FMI (Functional Mockup
Interface) standard was developed for the low level
exchange of models and for co-simulation [MC10].
More than 30 tools support this standard already.
Further progress can be achieved if these programs
would support, at least optionally, the same result
file format. For example, this would make it practical
to automatically compare results of the same FMI
model in different environments, and therefore the
FMI import and export between tools could be tested
in a much better way.

A standardized file format for simulation results
would also be helpful for the Modelica community:
More and more different Modelica simulators come
to the market. Many components, models and librar-
ies are developed in Modelica. They might be used
in different simulators. It is necessary to compare
results computed by different simulators automati-
cally. In particular, the Modelica Association plans

DOI Proceedings of the 9th International Modelica Conference 495
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

mailto:Andreas.Pfeiffer@dlr.de
mailto:Ingrid.Bausch-Gall@bausch-gall.de
mailto:Martin.Otter@dlr.de

to supply reference results for all simulation models
available in the Modelica Standard Library [MA10].
This is only practical, if the Modelica tool vendors
agree on a standardized result file format. Apart from
testing, it might be desirable to collect results e.g. of
all slaves in a co-simulation environment in one file.

1.1 Time Series Data

The basic purpose of the proposed file format is the
efficient and compact storage of time series data, as
shown in Table 1: The first column contains the val-
ues of the independent variable, usually time (but
might be also another quantity, e.g. frequency),
whose values must be monotonically increasing. A
discontinuity occurs, if a value appears several times
(here: at 0.4). Variable 𝑣 is an example of a variable
that depends on time t.

Table 1: Example for time series data.

Time 𝒕 Variable 𝒗 Variable 𝒘 …
0.0 2.8
0.2 3.2
0.4 5.1
0.4 7.2
0.5 6.9
0.6 5.5

If the variable is a continuous-time variable, then
𝑣 = 𝑣(𝑡) is a continuous function and there exist
also values of 𝑣 between the tabulated points. Such
intermediate points can be computed by interpolation
of the tabulated values. If the variable is a discrete-
time variable, then 𝑣 is computed by a sampled data
system at the values of the provided time instants. A
value between the time points is not defined for 𝑣. If
necessary, 𝑣(𝑡) with 𝑡𝑗 < 𝑡 < 𝑡𝑗+1 can be associated
with the previous value 𝑣(𝑡𝑗) (= hold-semantics).

1.2 Name of the Standard
Results from the numerical integration of time de-
pendent differential algebraic equations with discrete
variable changes are typical time series. Since the
standard shall be discussed, finalized and released by
the Modelica Association, it is proposed to call it
“Modelica Association Time Series File Format”,
shortly MTSF. This name is also used as the current
extension of the corresponding files (e.g. robot.mtsf).

2 Selection of Basic Data Format
As a first step we collected requirements for such a
file format and evaluated several existing formats
against these requirements [BP11].

2.1 Requirements for the Result Format
A format for a time series file should fulfill the fol-
lowing requirements:
• Small and huge amounts of data (more than 10

GBytes) must be written fast and efficiently.
• Extraction of data from small and huge files

must be fast.
• The format must be an internationally accepted

standard.
• The standard has to be open.
• The format has to be also accepted by simulator

developers outside of the Modelica community.
• It has to be future proof, which means stable

support by the developers of the standard is ex-
pected and it has to be supported by many tools.

• The format should handle at least all data types
of the FMI standard 1.0 [MC10] and the coming
FMI standard 2.0 [MC12].

• It should be possible to add more data, if desired
(e.g. diagrams of the model).

• APIs to standard programming languages like
C, C++ and Fortran should exist.

• It should be easily accessible from scripting
programs such as Matlab, Python, and others.

2.2 HDF5 Format
HDF, HDF4 and HDF5 (Hierarchical Data Format)
[THG12a] are a set of file formats and libraries de-
signed to store and organize large amounts of numer-
ical data, originally developed at the NCSA (Nation-
al Center for Supercomputing Applications at the
University of Illinois). In 2005, the Hierarchical Data
Format group was spinning off from NCSA as a non-
profit corporation to ensure continued development
of HDF technologies and the continued accessibility
of data currently stored in HDF [NCS+12]. The HDF
format, libraries and associated tools are available
under a liberal BSD-like license. HDF is supported
by many commercial and non-commercial software
platforms, including Java, Matlab, IDL and Python.

The freely available HDF distribution consists of an
API to access HDF files (implemented in C, with
layers for C++, Fortran and Java), command line
utilities, test suite sources, and the Java-based HDF
Viewer to directly inspect HDF files. The currently
existing two versions HDF4 and HDF5 differ signif-

Proposal for a Standard Time Series File Format in HDF5

496 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

icantly in design and API. The newer, more powerful
HDF5 format consists of a hierarchy of objects
where the leave objects are arrays. The dimensions
of an array need not be known in advance and may
be even constructed incrementally (as it naturally
occurs in simulations). Many native data types are
supported including all C data types. Furthermore,
data can be compressed and graphics as well as vid-
eos can be stored. On the HDF web page applica-
tions with terabyte file sizes are reported
(http://www.hdfgroup.org/why_hdf).

In [P10] a good overview of the features of HDF5 is
given. It is suggested to use HDF5 to store simula-
tion data. The reference highlights the following fea-
tures of HDF5: The tree structure for convenient
storage of data; HDF is a numerical aware middle-
ware; the files and APIs allow portability, maintain-
ability, compatibility of the user software; the open-
ness of the software and the trustworthiness of the
support.

2.3 Alternatives to HDF5
In order to handle efficiently large result data, only
binary formats seem to be suitable. In principal also
zipped xml-files might be applicable, but there seems
to be still quite a large overhead to store and retrieve
structured numerical data in such a format.

There exist also other open source binary file for-
mats, in particular:

• NETCDF1 from UCAR (University Corporation
for Atmospheric Research). The latest version of
NETCDF is a subset of HDF5 and the NETCDF
files are therefore compatible to HDF5 (see
“Format Descriptions” in
http://en.wikipedia.org/wiki/NetCDF).

• CDF2 from NASA. The CDF format is not com-
patible to HDF5. CDF seems to be also widely
used and is, e.g. supported in Matlab and Python.
CDF supports a set of arrays, but it does not sup-
port an object hierarchy. In this respect the
HDF5 format is more powerful.

Another alternative could be to not base the design
on a general purpose file format, but on a special
binary format dedicated solely to time series data:

• Such a format could be newly designed and im-
plemented. However, it would be a large effort
to develop, implement and support an API that

1 http://www.unidata.ucar.edu/software/netcdf
2 http://cdf.gsfc.nasa.gov

writes time series data in a subset of a HDF5-like
data structure. Therefore we decided to not fol-
low this approach.

• Another option would be to use one of the for-
mats of ASAM (Association for Standardisation
of Automation and Measuring Systems) [A12].
ASAM was founded in 1998 as an initiative of
German car manufacturers with the goal of offer-
ing a platform for the development of universal
standards such as MCD-2 MC, MDF, HIL
V1.0.1 and ODS. A standard like ASAM MDF
(Measurement Data Format) can be compared to
the MTSF approach. It is designed to store and
retrieve data from measurements. This standard
is widely used in automotive industry. HDF5 and
ASAM standards are, e.g., compared in [PA11].
There exists no open source API from ASAM to
read and write data. The standard texts are avail-
able for ASAM members (with expensive mem-
bership fees for industrial partners) or can be
bought for a pricey fee. For these reasons,
ASAM standards seem to be not suited as gen-
eral exchange format for time series result data
between many tools.

Since all requirements of section 2.1 are fulfilled by
the HDF5 format and there seems to be no equally
suitable competitor, we decided to base the MTSF
format on HDF5. Once the base file format is decid-
ed, the important question is what data to store? Our
main target is to store simulation result data from
tools that support the FMI standard [MC10, MC12].
Therefore, the time series data and associated meta-
information to be stored is based on this standard.

3 Structure of the File Format
The basic structure of an MTSF file is shown by
means of an example using screen shots from
HDFView [THG12b]. The example file is based on
the numerical integration of a Functional Mockup
Unit (FMU) [MC10] by the open source simulator
PySimulator [PHH+12]. The FMU was generated by
Dymola [DS12] from the model Modeli-
ca.Mechanics.Multibody.Examples.Systems.Rob

otR3.fullRobot of the Modelica Standard Library
[MA10]. The complete hierarchy of the result file is
shown in Figure 2.

On the top level, the file shows two groups named
ModelDescription and Results. ModelDescription
contains the meta-information of the variables. The
time series data of these variables is stored under
Results. In order to read the result data of one or
more variables, parts of the ModelDescription in-

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 497
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

http://www.hdfgroup.org/why_hdf/
http://en.wikipedia.org/wiki/NetCDF
http://www.unidata.ucar.edu/software/netcdf
http://cdf.gsfc.nasa.gov/

formation has to be inquired in order to determine
the location where the result data is stored.

Figure 2: HDF5 hierarchy of the example result file.

The root directory has an attribute mtsfVersion that
contains a string value for the version of the underly-
ing MTSF format, see Figure 3. All groups and da-
tasets from Figure 2 are described in the next subsec-
tions.

Figure 3: HDF5 attribute on root level of the result file.

3.1 Model Description
The HDF5 group ModelDescription contains a set of
attributes (see Figure 4) which give (optional) infor-
mation about the source of the model used for the
experiment. The information is based on the coming
FMI 2.0 definition [MC12].

Figure 4: HDF5 attributes of group ModelDescription in the
example result file.

Variables
The HDF5 dataset ModelDescription/Variables (see
Figure 6) defines the variables whose data is stored
in the file. The HDF5 type definitions of the dataset
Variables are displayed in Figure 5:
• name contains the names of the respective varia-

bles.
• simpleTypeRow defines the data type and the

unit of the variable by providing the row index
of the related simple type in dataset ModelDe-
scription/SimpleTypes (see below). For example
simpleTypeRow = 33 means that the type is de-
fined in row 33 of SimpleTypes which means
Modelica.SIunits.Angle (see Figure 8).

• causality and variability are HDF5 enumerations
and provide information about the nature of the
variable.

• description is a short description string of the
variable.

• objectId and column provide the information
where the data is stored for this variable (more
details are given in section 3.2).

• negated is introduced to enable negated alias
variables. It can only have the values 0 for false
or 1 for true. The value 1 indicates that the val-
ues for this variable (stored in the data matrices
under Results) have to be negated.

Figure 5: HDF5 variable types for the columns of the da-
taset ModelDescription/Variables in the example result file.

Instead of objectId and column it would also be pos-
sible to use an HDF5 region reference. This is a
HDF5 link to the region of a data matrix, in our cas-
es, e.g. a column of one of the matrices under Re-
sults/Continuous. A typical region reference looks
like 0:3396963{ (0,685)-(599,685) } in HDFView
where 3396963 is the HDF5 object id of the matrix.
The region is selected by row 0 up to row 599 of
column 685. The drawback of the region reference is
that it is not supported to link to a whole column of a
matrix. The row indices of the region have to be
specified, too. Because the number of result points is
generally not known before a simulation, the row
indices of the region reference have to be updated at
the end of the simulation process, which is quite an
overhead if many variables are present.

Proposal for a Standard Time Series File Format in HDF5

498 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

Simple Types

Figure 7: HDF5 variable types for the columns of the da-
taset ModelDescription/SimpleTypes in the example result
file.

The dataset SimpleTypes (see Figure 8) contains a
definition of the simple data types used in the varia-
ble description. The HDF5 data type definition of the
columns is depicted in Figure 7. The simple data
type can optionally have values for the string fields
name and quantity. dataType is an HDF5 enumera-
tion that specifies the basic data type (for example
Real has the value 1). The default value for unitOrE-
numerationRow is −1 (means no row) and for rela-
tiveQuantity it is 0. The relativeQuantity can only
have values of 0 or 1 that represent false or true (this
is only relevant if unit conversion takes place) If
dataType is equal to 5 (= Enumeration) the value of
unitOrEnumerationRow corresponds to a row in the
dataset ModelDescription/Enumerations, otherwise
to a row in the dataset ModelDescription/Units.

Units
Each simple data type can have a unit and several
display units. Display units for one simple data type
can be defined by using a row block in the dataset
Units, see Figure 9 and Figure 10. A unit can have
three different modes: base unit, display unit or de-
fault display unit. The value of unitOrEnumera-
tionRow has to correspond to a row in Units with
mode = 0 (BaseUnit), if there is a unit definition. If
some display units apply for this base unit, they have
to be listed in the rows below the base unit. Each
mode of the display units can be 1 (DisplayUnit) or 2
(DefaultDisplayUnit). Only one display unit may
have mode = 2. If no display unit has mode = 2, the
base unit is used as default display unit. The base
unit can only have mode = 0. If there is no unit (and
no enumeration) for a simple data type, then the val-
ue for its unitOrEnumerationRow is equal to −1 (de-
fault value).

For example, the simple data type Time (see row 56
in Figure 8) is a Real data type with a unit that is de-
fined in column 33 of the dataset Units. Here the
base unit is s and the display units are defined by
rows 34 up to 37 in the dataset Units (Figure 9). So,
the display units are: ms, min, h and d with corre-

Figure 6: Dataset Variables in group ModelDescription of the example result file.

Figure 8: HDF5 dataset ModelDescription/SimpleTypes in the example result file.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 499
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

sponding values for factor and offset in the style of
FMI 2.0 [MC12]. The default display unit is s. This
allows, e.g. a plotting program to display the results
in different units by using the conversion factors
stored in the Units group.

Figure 9: HDF5 dataset ModelDescription/Units in the ex-
ample result file.

Figure 10: HDF5 variable types for the columns of the da-
taset ModelDescription/Units in the example result file.

Enumerations
The dataset ModelDescription/Enumerations (see
and Figure 12) lists all enumerations that are defined
in the model variables, i.e. variables of type Integer
that can have only a small number of Integer values
and a string is associated with every value. A plot
program may then use the enumeration name instead
of an integer to mark the value in an axis. The value
of unitOrEnumerationRow corresponds to a row in
the dataset ModelDescription/Enumerations, if the
data type of a simple type is equal to 5 (= Enumera-
tion). Enumerations do not have units, so there is no
conflict with unit definitions.

Figure 11: HDF5 variable types for the columns of the da-
taset ModelDescription/Enumerations in the example re-
sult file.

The row of Enumerations that corresponds to uni-
tOrEnumerationRow has to have firstEntry = 1. The
firstEntry column marks a new row block of enu-
merations. Each enumeration has a name and an in-
teger value and may have a separate description

string for example, the simple type StateSelect is an
enumeration type with unitOrEnumerationRow = 7,
it means in row 7 of Enumerations the defining
enumeration block starts from “never” (1) up to “al-
ways” (5). Values for enumeration types are stored
as integer.

Figure 12: HDF5 dataset ModelDescription/Enumerations
in the example result file.

3.2 Time Series Results
The numeric data associated with the defined varia-
bles is stored under Results. The HDF5 attributes of
Results in Figure 13 include the most important pa-
rameters for the simulation experiment. ResultType
defines the kind of the experiment, here: Simulation.
The other attributes depend on the value of Re-
sultType. For example, a result type Measurement
has other attributes than a result type Simulation, but
the attributes are standardized. The values of the at-
tributes are optional with empty strings as default.
Standardized attributes are necessary to exchange the
attributes between different tools.

Figure 13: HDF5 attributes of group Results in the exam-
ple result file.

The experiment may provide several time series un-
der Results. Example names for the time series are
Continuous for continuous-time variables, Discrete
for discrete-time variables which change their values
only at events, and Fixed for variables that do not
depend on an independent variable (constants and

Proposal for a Standard Time Series File Format in HDF5

500 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

parameters). Additional groups might correspond to
different clocks (e.g. a group for a periodic sample
rate of 2 ms and a group for a periodic sample rate of
7 ms).

The group names of the time series can be freely
chosen. Every time series (corresponding to a sepa-
rate HDF5 group) may be associated with an inde-
pendent variable. Therefore, each time series group
has the attributes independentVariableRow and in-
terpolationMethod. For example the attribute defini-
tions of groups Continuous and Discrete are shown
in Figure 14.

Figure 14: HDF5 attributes of the groups Re-
sults/Continuous and Results/Discrete in the example re-
sult file.

The value of independentVariableRow is the row
index in the dataset ModelDescription/Variables and
defines the variable that is used as independent vari-
able for the relevant data. In our example the inde-
pendent variable of Continuous is variable Time that
has a row index of 0. The independent variable of
Discrete is variable DiscreteTime that has a row in-
dex of 1. For group Fixed the index independentVar-
iableRow is equal to −1 in order to indicate that the
variables are constant and do not depend on an inde-
pendent variable.

The value of interpolationMethod is linear, constant
or clocked and indicates how the numeric data values
corresponding to the time series have to be interpret-
ed. Linear means that piecewise linear interpolation
is suggested between the given points. Constant
means that the value of a variable for a point of time
is held constant until the next point of time. Clocked
means that no interpolation should be applied and
only the values at the stored time points should be

shown in a plot. Typically, linear is applied for con-
tinuous-time variables, constant for discrete-time
variables that have an explicit value between event
points, and clocked for sampled variables.

All time series data under a group like Continuous
are stored in matrices. The column of such a matrix
corresponds to one or more model variables and the
row corresponds to the values of the independent
variable. All elements of a matrix have the same
HDF5 data type and the name of this data type is
used as name of the matrix. In Figure 2, there are
three matrices under Discrete of the types
H5T_NATIVE_DOUBLE, H5T_NATIVE_INT32, and
H5T_NATIVE_INT8. These are HDF5 data types and
mean the matrices have a 64 bit floating type, a 32
bit integer type and an 8 bit integer type, respective-
ly. In the latter matrix, the data of Boolean variables
is stored as value 0 or 1. A basic Boolean type is not
available in HDF5.

Figure 16: Parts of the dataset Results/Discrete/
H5T_NATIVE_INT32 from the example result file.

Parts of the matrix Results/Discrete/H5T_NATIVE-
_INT32 are shown in Figure 16. Each column of the
matrix contains the numeric data of one or more dis-
crete integer variables. The time values for the data
are stored in a column of the matrix Re-
sults/Discrete/H5T_NATIVE_DOUBLE (see Figure
15). The column index is given in column of Mod-
elDescription/Variables for the independent variable
DiscreteTime. In the example file the column index

Figure 15: Parts of the dataset Results/Discrete/H5T_NATIVE_DOUBLE from the example result file.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 501
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

is 0. So the first column of Discrete/H5T_NATIVE-
_DOUBLE represents the time for all discrete varia-
bles. All matrices of a time series group have the
same number of rows: They are based on the same
independent variable values.

4 Performance Tests with Python,
Dymola and Matlab

We used Python 2.7 [Py12] to implement a test envi-
ronment for writing and reading MTSF files. The
Python(x,y) distribution (version 2.7.2.1) [P12b] in-
cludes the HDF5 interface h5py (version 2.0.1)
[H12], which provides high level interface functions
in Python for HDF5 files. In a second step, reading
MTSF files by Matlab [M12] is tested.

4.1 Hierarchical Variables Concept
In the initial design phase of the MTSF format a dif-
ferent (alternative) format has been investigated than
presented in Section 3. In this section we shortly ex-
plain this alternative format (called hierarchical var-
iables concept), because it seems to be straightfor-
ward to save hierarchically structured variables in a
HDF5 group hierarchy. However, the performance
measurements in Section 4.2 and 4.4 indicate that the
table-based approach of section 3 is better.

Figure 17: Parts of the HDF5 hierarchy using the hierar-
chical variables concept for the example result file.

The one to one mapping of hierarchical variable
names to HDF5 groups and datasets is the main dif-
ference to the MTSF format presented in Section 3.
For example, for the variable axis1.accSensor.w
the dataset ModelVariables/axis1/accSensor/w in
Figure 17 contains all the necessary information
about the variable. The ModelDescription group (see
Section 3.1) with its compound datasets is not pre-
sent in this concept.

For first testing purposes the deepest dataset for each
variable is only a 1x1 dataset containing an HDF5
object reference to one of the matrices under e.g.
Results/Continuous. The numeric data for the varia-
ble is stored in one of the columns of the referenced
matrix. The column index is stored as attribute to the
reference dataset. It would also be possible to use an
HDF5 region reference instead of the object refer-
ence and the column index. The resulting files sizes
would only differ slightly.

Additional information (data type, unit, etc.) of each
variable can be stored as further attributes. Some
attribute examples are listed in Figure 18. To get the
whole information included in the MTSF format of
Section 3, much more attributes (or dimensions of
the dataset) would be necessary. We have not
worked it out so far.

Figure 18: Some HDF5 attributes of each hierarchical vari-
able dataset.

The advantage of the hierarchical variables concept
is the hierarchical mapping of the model variable
names and the HDF5 groups / datasets in the Model-
Variables tree. Therefore, HDFView shows automat-
ically a tree of the model variables when browsing
through the groups. The main disadvantage of the
hierarchical concept is the possibly large number of
HDF5 objects building the ModelVariables tree. In-
tuitively, this is similar to a file system: Reading or
writing 10 files (corresponds to the MTSF format of
Section 3) is more efficient than reading or writing
10000 files (corresponds to the hierarchical variables
concept) in which the same data is stored.

In the next subsection we compare the files that re-
sult from the two different concepts: hierarchical
storage of variable information vs. the final MTSF

Proposal for a Standard Time Series File Format in HDF5

502 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

format of Section 3 with few HDF5 compound da-
tasets in ModelDescription.

4.2 File Sizes

In MTSF files the HDF5 compression of objects with
the gzip algorithm can be used which is very effec-
tive for the meta-information, whereas compression
with gzip in the hierarchical variable concept is tech-
nically not possible. The reason is that the meta-
information of one variable of the hierarchical con-
cept is stored in an HDF5 group, and HDF5 does not
support compression of such an object.

The binary result file of the Modelica modeling and
simulation environment Dymola [DS12] is used as a
reference to compare the file sizes generated in
HDF5. This proprietary storage format of Dymola is
very compact. Dymola stores variables with different
names and same data (so called alias variables) just
once. Dymola also stores negated alias variables, i.e.
the numeric data of two variables a = −b only once.
If b is stored, for variable a only the information is
stored that it has the values of –b. This aliasing
method is also used in the MTSF and in the hierar-
chical format.

As the performance measurements below indicate,
storing many (more than 1000) objects in HDF5 with
standard options is very storage consuming. The
storage requirements can be considerably reduced by
using the following two options [THG11]:
• For the storage strategy of objects the option

Compact (in Python: h5py.h5d.COMPACT)
should be used, instead of Contiguous or
Chunked. This option leads to storing the raw
data of small datasets in the header of the da-
taset.

• In HDF5 1.8.0 an optional mechanism is intro-
duced to store groups much more efficiently by
using a fractal heap and indexed with an im-
proved B-tree. In order to activate this feature,
the version number in which the HDF5 file is
generated needs to be specified by the option
H5F_LIBVER_LATEST. In Python, the file has
to be opened by h5py.File(..., libver=

”latest”).

The full robot model (see section 3) is used as test
case. This model has about 7000 variables, where
2500 are parameters and constants, 800 variables are
time varying and the other variables are alias or ne-
gated alias variables. For the performance test 500
fixed grid result points and 2∙50 varying grid result

points due to 50 state events are taken into account.
Discrete variables are only stored at event points, but
continuous variables are stored at grid and event
points, here at 600 points. This gives the sizes of the
files in Table 2.

Table 2: File sizes of the RobotR3 example for 500 grid
points and different formats. The first column of Relative
Size is normalized to the result of the Dymola format. The
second column is normalized to the results of the MTSF
format.

Format Raw MB
Relative

Size
Hierarchical variables
format with standard
options

HDF5 27.6 5.11 7.46

Hierarchical variables
format with options
compact and latest

HDF5 7.4 1.37 2.00

Dymola format MAT 5.4 1.00 1.46

MTSF format HDF5 3.7 0.69 1.00

The MTSF format results in a file size that is just
half of the file size of the HDF5 hierarchical varia-
bles format, so it is clearly superior. Furthermore, the
MTSF format gives about 30% smaller file size with
respect to the Dymola file, although more meta in-
formation is stored than in the Dymola file.

Table 3: File sizes for 5000 grid points and different for-
mats. The first column of Relative Size is normalized to the
result of the Dymola format. The second column is normal-
ized to the results of the MTSF format.

Format Raw MB
Relative

Size
Hierarchical variables
format with standard
options

HDF5 54.1 1.56 1.79

Hierarchical variables
format with options
compact and latest

HDF5 33.8 0.98 1.12

Dymola format MAT 34.6 1.00 1.15

MTSF format HDF5 30.2 0.87 1.00

For result files with increasing number of result
points, the relative differences between the different

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 503
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

approaches is decreasing, which can be seen in Table
3 for 5000 fixed grid result points and 2∙50 varying
grid result points at events. The reason of a decreas-
ing difference are the file size dominating data ma-
trices that are identical at least in the HDF5 files.

4.3 Writing and Reading of Large Files

The previous tests evaluated writing of HDF5 files.
If the HDF5 file becomes very large, it can no longer
be read in one piece. Reading files which are larger
than the main memory is slow, as virtual memory
paging has to be used. The question arises how this
is handled. In Dymola, and many other simulation
programs, reading a result file requires to read it
completely in to memory and then the file sizes that
can be handled are restricted by the respective main
memory. Here the power of the HDF5 format is ap-
plied. It is possible to read just a specified column of
a matrix, without reading the whole matrix. Internal-
ly, the HDF5 matrix is split into chunks (= smaller
matrices) and only the relevant chunks are read
[THG11].

Performance of writing and reading some parts of a
huge matrix depends on amongst others the sizes of
the chunks. Because it is not fixed what parts of re-
sult matrices are read after writing, the chunking de-
tails are not specified for an MTSF file.

Table 4: File sizes and performances of writing and read-
ing MTSF files.

Rows MB GB

6∙103 766 35.5 0.03 0.5 0.15 0.02

6∙104 766 352 0.34 5.9 0.23 0.06

6∙105 766 3517 3.4 62.2 0.84 0.2

6∙106 766 35160 34 1109 4.9 1.2

3.6∙107 766 210410 205 11400 25.5 1.9

In Table 4 experiments with the full robot model on
a solid state disk (on a system with an Intel Xeon
X5550 @ 2.67 GHz processor) are documented. The
number of time points has been increased to get large
HDF5 files. Performance of reading two columns
(time and one model variable) of the matrix Re-

sults/Continuous/H5T_NATIVE_DOUBLE into Py-
thon is documented in column Reading 1. Perfor-
mance of reading the last row of the matrix (final
value of all variables) is shown in column Reading 2.
We did not investigate how different chunk sizes
influence the result. It is clear that a fine tuning can
improve the numbers in Table 4.

This test proves to be able to write data to and read it
from result files beyond 200 GB in acceptable time.
Further tests should verify the handling of huge files.
Using HDFView, the structure of large files can be
inspected without problems. Only for the 205 GB
file, HDFView is slowing down.

4.4 Reading by Matlab

Matlab [M12] is one of the most commonly used
scripting tools in engineering applications. Therefore
it has to be simple and fast to read data from MTSF
files in Matlab. The test concentrates on reading the
names of all variables of a result file. Using this list
of variables a variable tree browser could be generat-
ed. We investigate reading two files of the full robot
model. One file is according to the proposed MTSF
format (see Section 3), the other file follows the hi-
erarchical variables concept (see Section 4.1).

Table 5: Time for reading all variable names in different
formats. For the hierarchical variables concept we distin-
guish between a format that includes HDF5 enumerations
in attributes of HDF5 datasets and replacing them by sim-
ple integer values.

Matlab function

Hierarchical
Variables
Concept MTSF

Enum. Integer

h5info Error 75 s 0.1 s

hdf5info (outdated) 13 s 5.5 s 0.1 s

Matlab 2011b offers the high level functions h5info
for reading the structure of an HDF5 file and h5read
for reading one dataset. To get the names of all vari-
ables for the hierarchical variables concept one has
to read the tree structure of the HDF5 group Model-
Variables. We use h5info for it. Apparently, Matlab
is not able to read enumeration attributes in HDF5
datasets. Therefore, we generated a new result file
and replaced enumerations by simple integer values.
The elapsed time for reading the different files are
listed in Table 5. Using the outdated Matlab function

C

ol
um

ns

W
ri

tin
g

[s
]

R
ea

di
ng

 1
 [s

]

R
ea

di
ng

 2
 [s

]

Proposal for a Standard Time Series File Format in HDF5

504 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

hdf5info we were able to reduce the elapsed time
for the hierarchical variables concept.

The MTSF file contains only a few HDF5 groups
and datasets, whereas the file of the hierarchical var-
iables concept includes many (small) groups and ob-
jects. So it seems evident that reading the result file
structure is faster for the MTSF file. To get all varia-
ble names from a MTSF file one has to read the da-
taset ModelDescription/Variables. Using the Matlab
command h5read('fullRobot.mtsf', '/Model-

Description/Variables') the information is avail-
able. The execution time for this command is 0.02 s.
In summary, reading the variable names from the
MTSF file is much faster than for the hierarchical
variables concept. These preliminary tests with
Matlab also clearly indicate that the proposed file
format is better suited than the hierarchical variables
concept. Furthermore, the Matlab h5read m-file does
not support region references. Besides the other
drawbacks discussed in Section 3.1, it is therefore
advisable to not use region references in HDF5 files,
if the files should be read by Matlab.

5 Conclusions
A standard for time series result files typically gen-
erated by dynamic model simulations is proposed.
The standard is based on the HDF5 file format be-
cause HDF5 offers many features to flexibly and
efficiently store data. In test cases huge files larger
than 200 GB are successfully written and read. We
hope to come into discussion with all persons who
are interested in a standard result file format. The
goal is to define an internationally well accepted
standard that is supported by many tool vendors.

6 Acknowledgements
We acknowledge the coding and testing work of J.
M. Solis Lopez’ (formerly Bausch-Gall GmbH). M.
Friedrich (Simpack AG) gave very useful infor-
mation to reduce the file size of HDF5 files generat-
ed when using the hierarchical variables concept. We
acknowledge his support. Also, we are grateful for
the constructive comments of the reviewers.

References
[A12] Association for Standardisation of Automa-

tion and Measuring Systems. www.asam.net.
[BP11] Bausch-Gall I. and Pfeiffer A.: Standard effi-

cient Storage of Simulation Results.
ASIM2011, 21. Symposium Simulationstech-
nik, 7. - 9. Sept. 2011, Winterthur, Switzer-
land, 2011.

[DS12] Dassault Systèmes AB: Dymola.
www.dymola.com.

[H12] H5py. http://pypi.python.org/pypi/h5py.
[M12] MathWorks: Matlab.

www.mathworks.com/products/matlab.
[MA10] Modelica Association: Modelica Standard

Library 3.2, Oct. 2010.
www.modelica.org/libraries/Modelica.

[MC10] MODELISAR consortium: Functional Mock-
up Interface for Model Exchange, Version
1.0, 2010. www.functional-mockup-
interface.org.

[MC12] MODELISAR consortium: Functional Mock-
up Interface for Model Exchange and Co-
Simulation, Version 2.0 Beta 3, 2012.
www.functional-mockup-interface.org.

[NCS+12] http://access.ncsa.illinois.edu/Releases/-
05Releases/07.12.05_NCSA%27s_HDF.html

[PHH+12] Pfeiffer A., Hellerer M., Hartweg S., Otter M.
and Reiner M.: PySimulator – A Simulation
and Analysis Environment in Python with
Plugin Infrastructure. Accepted for publica-
tion in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[PA11] Phillips A. W. and Allemang R. J.: Require-
ments for a Long-term Viable, Archive Data
Format. Structural Dynamics, Conference
Proceedings of the Society for Experimental
Mechanics Series, Volume 12, pp. 1475-
1479, Springer, New York, 2011.

[P10] Poinot, M.: Five Good Reasons to Use the
Hierarchical Data Format. Computing in
Science & Engineering, Vol. 12, Issue 5, pp.
84-90, 2010.

[P12a] Python. www.python.org.
[P12b] Python(x,y). www.pythonxy.com.
[THG11] The HDF Group: HDF5 User’s Guide, HDF5

Release 1.8.8, Nov. 2011.
[THG12a] The HDF Group, www.hdfgroup.org.
[THG12b] The HDF Group: HDFView.

www.hdfgroup.org/hdf-java-html/hdfview.
[TSC12] The Scilab Consortium: Scilab.

www.scilab.org.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 505
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

http://www.asam.net/
http://www.dymola.com/
http://pypi.python.org/pypi/h5py
http://www.mathworks.com/products/matlab
https://www.modelica.org/libraries/Modelica
http://www.functional-mockup-interface.org/
http://www.functional-mockup-interface.org/
http://www.functional-mockup-interface.org/
http://access.ncsa.illinois.edu/Releases/05Releases/07.12.05_NCSA%27s_HDF.html
http://access.ncsa.illinois.edu/Releases/05Releases/07.12.05_NCSA%27s_HDF.html
http://www.python.org/
http://www.pythonxy.com/
http://www.hdfgroup.org/
http://www.hdfgroup.org/hdf-java-html/hdfview
http://www.scilab.org/

Proposal for a Standard Time Series File Format in HDF5

506 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

