
Translating Modelica to HDL: An Automated Design Flow for FPGA-

based Real-Time Hardware-in-the-Loop Simulations

 Christian Köllner Torsten Blochwitz Thomas Hodrius

 FZI Forschungszentrum

Informatik

ITI GmbH

SET GmbH

 Haid-und-Neu-Str. 10-14 Webergasse 1 August-Braun-Straße 1

 76131 Karlsruhe 01067 Dresden 88239 Wangen/Allgäu

 koellner@fzi.de blochwitz@itisim.com hodrius@smart-e-tech.de

Abstract

Advances in the development of electric vehicles

challenge existing test methodologies and tools. In

particular, hardware-in-the-loop test rigs to verify

electric motor controllers require real-time drivetrain

emulation with response times in the order of one

microsecond. Field-programmable gate arrays can

fulfill these requirements due to their high parallel-

ism and the possibility to realize efficient and pre-

dictable I/O interfaces. We present an integrated

methodology which translates Modelica models to

VHDL hardware designs. Our methodology com-

bines well-engineered algorithms from Modelica

compilation and high-level synthesis for hardware.

We demonstrate its capabilities using the example of

a DC motor which was synthesized and implemented

on a Xilinx Virtex-5 device.

Keywords: FPGA; High-level synthesis; VHDL;

Hardware-in-the-Loop; Real-time

1 Introduction

Recent movement towards electric vehicles im-

poses new challenges on the development of

drivetrains. Especially the verification of electric

motor controllers (EMCs) using the hardware-in-the-

loop (HiL) test methodology requires real-time simu-

lation of the functional environment with low laten-

cies. An EMC is an integrated device, consisting of

an electronic control unit (ECU) and a power stage.

The ECU implements current, acceleration and/or

speed control and safety functions whereas the pow-

er stage generates the motor currents. The test rig

wires the EMC to an emulator, as shown in Figure 1.

An electric motor emulator (EME) emulates an elec-

trical motor under real conditions, including position

feedback and other sensor signals. If needed, a power

stage recreates the original currents and voltages.

Figure 1: EMC test bed schematic

Due to the dynamic electric behavior of the mo-

tor, the model iteration rate has to be in the order of

one microsecond. Since such real-time requirements

are hard to meet using software solutions, HiL emu-

lators of electric machines typically involve a field-

programmable gate array (FPGA) which carries out

time-critical computations. FPGAs are highly paral-

lel reconfigurable hardware circuits which are well-

suited for high-performance real-time computations.

However, their programming model is fundamentally

different from general-purpose computing. This fact

makes current modeling environments lack an inte-

grated flow from model to hardware. Although Mod-

elica has proven to be an effective language for de-

scribing electric hybrid drivetrains [1], there is cur-

rently no tool support for compiling Modelica to

FPGAs.

Our contribution tries to close this gap. We pro-

pose an integrated methodology for compiling Mod-

elica models to an FPGA configuration. The imple-

mentation is realized and validated using Simula-

tionX. Our approach combines well-known method-

ologies from both differential-algebraic equation

(DAE) processing and high-level synthesis (HLS).

We employ inline integration to obtain a compact

calculation rule which can be efficiently mapped to

DOI Proceedings of the 9th International Modelica Conference 355
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

hardware. Moreover, we incorporate parametrizable

circuit templates (so-called IP cores) to solve com-

mon subproblems during the mapping process.

Our paper is organized as follows: Section 2 in-

vestigates related work from commercial and aca-

demic perspective. Section 3 gives a short explana-

tion of FPGA functionality and the programming

model. Based on the specifics of FPGA operation,

section 4 states the requirements to achieve an inte-

grated, automated design flow from model to hard-

ware. Section 5 explains these implications on model

entry. In section 6, we discuss the overall design

flow from Modelica to hardware. Section 7 presents

the characteristics of an exemplary direct current

(DC) motor model which was translated to hardware.

Finally, section 8 concludes the paper and gives an

outlook to future work.

2 State of the Art

Electric motor controllers used in automation and

automotive applications combine controller and

power stages in one device. Testing and verifying

EMCs in an HiL environment is challenging, since

the behavior of the electric motor must be rebuilt

true to original. Otherwise, the EMC would diagnose

a malfunction and enter failure mode. The interface

between the EMC and HiL system can be realized on

a mechanical, electric power, or signal level [2].

On the mechanical level, the original electric mo-

tor is connected to the EMC. Another motor is

flanged and applies the mechanical load, computed

online by a simulation model. Such dynamometer

test stands (as shown in Figure 2) are expensive to

build, hard to control, and not flexible in usage.

Figure 2: Dynamometer test stand

Interfacing on the signal level requires cutting the

connection between the controller and power stage.

This “cracked ECU” approach requires knowledge of

controller internals. The behavior of the electric mo-

tor and its load is computed by a fast microprocessor

or an FPGA device. The computed current-sensing

signals are fed back to the ECU along with other

simulated sensor signals (shown in Figure 3). This

approach excludes the power stage from test and ver-

ification.

Figure 3: Cracked ECU test bed

When interfacing at the electric power level, the

electric current is generated by special power elec-

tronics and fed back to the power stage of the unit

under test. This methodology is referred to as Power

Hardware-in-the-Loop (P-HiL). The SET EME real-

izes this methodology, reproducing proper power

loads [3] without rotating parts (see Figure 4). The

interface to the EMC is identical to the real motor. It

consists of the motor phases and position sensor sig-

nals (e.g. resolver), if needed. Its applications vary

from small servo controls with less than 100 W to

electric power trains with several 100 kW. A wide

range of motor types and rotor position interfaces is

supported.

Figure 4: Electric motor emulator test bed

To achieve realistic emulation behavior, high

switching frequencies of the EME power amplifiers

are needed. This is especially important when operat-

ing at high rotational speeds and to emulate dynamic

behavior, such as speed ramps. Hence, for these use

cases special power amplifiers with application-

dependent switching frequencies up to 800 kHz are

deployed. Controlling the power amplifier requires

input/computation/output latencies of 1.25 µs.

Both the cracked ECU approach and P-HiL typi-

cally rely on FPGA-based implementations of the

motor simulation. In absence of a suitable toolchain

these models are commonly coded by hand, using a

hardware description language (HDL). Examples

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

356 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

include a commercial model of inverter and perma-

nent magnet synchronous machine (PMSM) [4], a

DC motor [5], a squirrel-cage induction machine [6]

and a generic implementation which covers an ex-

haustive set of AC motor types [7]. Yet, there is no

general agreement on the type of arithmetic: most

models incorporate fixed point arithmetic [5-7]

whereas one contribution relies on floating point [4].

The development of such models is generally error-

prone and time-consuming, especially if complex

models (e.g. a nonlinear model of synchronous mo-

tors) or detailed drivetrains, including clutches and

rigid end stops, must be realized.

In reference [8], HDL Coder from The Math-

works was used to implement a Simulink DC motor

model on an FPGA. This toolchain is restricted to

Simulink models without continuous states. User

interactions and reformulation of the model are nec-

essary to achieve a fast and synthesizable FPGA de-

sign. A similar approach is presented in [9]. The au-

thors create a Matlab/Simulink model of a permanent

magnet synchronous machine using the Xilinx Sys-

tem Generator (XSG) blockset. Again, the method-

ology requires the engineer to model at the hardware

level. Reference [10] presents an approach to gener-

ate fixed point code from Modelica. It is capable of

exporting Mitrion-C code for FPGA applications, but

no details are given on how the transformation to-

wards an FPGA design works, and no FPGA imple-

mentation is presented.

3 FPGA Fundamentals

3.1 Overview

An FPGA is an integrated digital circuit whose func-

tionality is programmable after manufacturing. To

achieve programmability, FPGAs generally provide

configurable combinatorial logic blocks and memory

elements. These can be wired in a large variety of

ways. By combining both primitives – logic and

memory – it is theoretically possible to recreate any

digital circuit. Recent FPGAs are computationally

equivalent to roughly 20 million logic gates. Most

devices provide additional built-in macro cells for

frequent tasks, such as hardware multipliers and stat-

ic RAM.

3.2 Programming FPGAs

In most cases, a hardware description language

(HDL), such as VHDL and Verilog is used to de-

scribe the intended digital circuit. Vendor-specific

toolchains transform the described design into a

netlist representation, map it to device primitives,

optimize the geometric placement of that mapping

and finally produce a programming file which con-

figures the FPGA.

HDLs also define control-flow statements, which

in fact turn them into general-purpose programming

languages. However, these constructs are primarily

intended for simulation/verification purposes and are

mostly not supported for circuit modeling. A HDL

description is said to be synthesizable, if it is possi-

ble to represent it by a functionally equivalent netlist.

Therefore, synthesizability is a mandatory prerequi-

site to FPGA configuration. Particularly, analog-

mixed signal extensions of VHDL (VHDL-AMS

[11]) are generally not synthesizable.

3.3 Example

The following example is kept in VHDL and il-

lustrates the impact of a specific notation on the syn-

thesized circuit. Assume that we want to transform

the following computation into a digital circuit:

If we encode all operands using a fixed point rep-

resentation, there is a straightforward VHDL transla-

tion of the given calculation rule:

r <= a * b + c * d;

This implementation implicitly prescribes a com-

binatorial, fully-spatial realization. Synthesis infers a

circuit which consists of two multipliers and one ad-

der. Although this is the fastest possible realization,

it may miss a design goal: Embedded in a synchro-

nous design, this circuit may drop the achievable

clock rate because of its combinatorial path. This can

be avoided by buffering multiplication results in in-

termediate registers. If we need to save FPGA re-

sources, a longer computation time might be ac-

ceptable. In this case, the calculation can be de-

scribed as finite state machine (FSM):

 Compute: process(Clk)
 begin

 if (rising_edge(Clk)) then

 case state is

 when Mul1 => tmp1 <= A * B;

 state <= Mul2;

 when Mul2 => tmp2 <= tmp1;

 tmp1 <= C * D;

 state <= Add;

 when Add => R <= tmp1 + tmp2;

 state <= Mul1;

 end case;

 end if;

 end process;

This implementation spreads the computation

across three clock cycles. Since at most one multipli-

cation happens per clock step, synthesis will share

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 357
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

resources: the novel circuit requires only one multi-

plier instead of two.

Changing the computation to floating point

arithmetic requires the designer to use either special

libraries or to interface the design with an IP core. IP

cores are pre-built circuit templates with well-

defined functionality which are either supplied by

the device manufacturer or third-party vendors. This

option usually provides better performance and de-

tailed hardware tuning parameters. IP cores are also

available for advanced mathematical operators, such

as division, square-root and trigonometry.

High-level synthesis (HLS) is a field of research

which addresses automated transformation of formal

behavioral descriptions (mostly C/C-like program-

ming languages) to hardware [12]. The transfor-

mation is constrained by requirements, such as re-

source consumption and time. Despite commercial

tools are available, their success is limited. This is

not only due to their high asset costs but also due to

the user’s uncertainty with respect to the quality of

results [13]. Their effectiveness varies strongly with

problem domain and coding style. Our contribution

exploits the ideas of high-level synthesis. By tailor-

ing its methodologies to the specific area of physics

simulation we get a domain-specific approach which

is able to meet our resource and timing requirements.

4 Requirements

The intended application imposes several implica-

tions on the chosen approach and equation pro-

cessing. The following subsections discuss them in

more detail.

4.1 Inline integration

Typical code generation from Modelica relies on a

software infrastructure which distinguishes solver

and model. The solver is in control of the overall

simulation and employs callback functions to trans-

fer control to the model-specific evaluation of deriv-

atives. A tight interaction with strong data dependen-

cies connects the solver and model components. This

interaction is entirely time-multiplexed, exposing

only little potential to parallelize [14]. Establishing a

spatial distinction between solver and model on the

FPGA would produce hardly any benefit. Thus, it is

preferable to synthesize a self-contained calculation

rule which encompasses the overall computation to

carry out one integration step. This technique is

called inline integration [15].

4.2 Real-time execution

During real-time computation, two conditions must

be fulfilled: First, the computation time to perform a

single integration step must be bounded and predict-

able. Second, the integration step size must have a

lower bound. Since data acquisition and output of an

HiL emulator usually happen at a fixed sample rate,

it is even desirable to employ a fixed-step integration

method.

Moreover, Modelica events must be used with

care. Due to the fixed step size, the precise time in-

stance of state events cannot be localized. Events are

shifted to the end of the current integration step. In

our case, this should not lead to problems because

the step size used on a FPGA device is small com-

pared to common processor-based HiL systems.

At event instances, a Modelica simulator carries

out event iteration. The model is recomputed at the

same time instance until discrete variables do not

change anymore. The number of necessary event

iteration steps cannot be predicted. Hence, the real-

time condition might be violated. For that reason the

model should be built in such a way that avoids

event iterations. The Modelica compiler should rec-

ognize if the model requires event iterations (e.g. due

to algebraic loops over discrete variables) and inform

the user.

Implicit integration methods as well as algebraic

constraints can necessitate the solution of non-linear

systems of equations during simulation. Since such

systems are usually solved by numerical methods, it

is not guaranteed that the solution algorithm con-

verges within a bounded number of iterations. There-

fore, non-linear systems of equations should be

avoided by the model. Ultimately, Modelica allows

for embedding arbitrarily complex algorithms into

any computation. It is the designer’s duty to ensure

that they have bounded execution times.

4.3 Choice of arithmetic

PC-based simulations usually rely on IEEE 754

floating point data types. Although this type of

arithmetic can be implemented on an FPGA, it has

weaker performance and higher resource consump-

tion compared to equally-sized fixed point data. The

situation changes if an adequate fixed point represen-

tation would require disproportionately large word

sizes. FPGAs support “uncommon” word lengths

(which are not powers of two). An appropriate syn-

thesis flow should exploit these facts and support

both – possibly mixed – floating point and fixed

point arithmetic operators.

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

358 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

4.4 Sustaining domain-specific knowledge

A key challenge is to identify the level of abstraction

at which a preprocessed model should be handed

over to the hardware-centric synthesis flow. Physical

computations involve many subproblems which can

be directly mapped to IP cores. Examples are math-

ematical operators, such as sine/cosine, square-root

and the absolute value function. Calls to such func-

tions should be preserved in order to give the synthe-

sis flow a chance to adopt dedicated hardware com-

ponents. Another example is the solution of linear

equation systems, which is necessary to simulate

models with algebraic loops. In the past, numerous

high performance linear solvers for FPGAs were de-

veloped [16-19]. To enable their usage, model pre-

processing should keep linear systems instead of in-

serting a specific solver algorithm.

4.5 Minimizing computation effort

Compiler optimizations, such as common sub-

expression elimination and exploiting algebraic iden-

tities are particularly important when targeting

FPGAs. Device resources are limited, and each addi-

tional operation will affect either performance or

area. Conversely, the slimmer design will fit on the

smaller and cheaper device. Although it is possible

to generate FPGA solvers for linear or nonlinear

equation systems, avoiding such systems helps to

keep the design compact.

5 FPGA-Aware Modeling

As implied by the special capabilities and limitations

of FPGAs, the user should adhere to certain model-

ing guidelines when designing models for FPGA

execution. Violating them can cause the translation

to fail or lead to bloated hardware designs. We im-

plemented a Modelica library prototype which con-

tains frequently used elements for modeling electri-

cally driven drivetrains and takes these aspects into

account. Using this library and considering some

modeling guidelines will lead to synthesizable de-

signs faster than using the general purpose Modelica

Standard Library or the SimulationX libraries. Figure

5 shows the structure of the library.

Special considerations were necessary for the dry

friction model. Real-time motor emulation requires a

robust friction model that reproduces correct stiction

behavior. Usage of the friction element should nei-

ther result in a combined discrete continuous system

of equations nor cause event iteration. By combining

friction behavior with inertia, the resulting friction

torque and the new discrete state can be computed

explicitly. The solution of a system of equations and

event iteration become obsolete. This approach is

used by the library elements “Inertia with Friction”

and “Clutched Inertias.”

Further systems of equations can be avoided, if

some modeling guidelines are obeyed. For example,

an inertia element should be placed between ele-

ments which introduce a torque to the system (spring

dampers, motors, loads). Inertia elements should not

be strung together. These rules do not restrict the

model features which can be represented by the li-

brary. Only the way in which models are to be built

up is slightly constrained. If the rules are violated

and systems of equations persist, the Modelica com-

piler generates appropriate warnings.

6 Compilation and Synthesis

Figure 6 illustrates the overall design flow which is

implemented by our software prototype. The follow-

ing subsections explain the procedure step-by-step.

Figure 5: Screenshot of the library structure

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 359
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

6.1 Preparation of the model

First, the interface of the model is to be specified.

The user selects inputs, outputs and parameters

which shall be available on the FPGA. Inputs, out-

puts and parameters will become VHDL ports of the

generated hardware design unit.

6.2 Modelica compilation

Most stages of the compilation process are not

specific to FPGA code generation. Some steps after

flattening (step 2) of the Modelica model are specific

according to the requirements of Section 4. In order

to reduce the complexity of the resulting VHDL

code, loops of known and constant range are un-

rolled, and equations of higher dimension are ex-

panded. Furthermore, equations and variables which

do not influence the selected model outputs are re-

moved. Functions are inlined since function calls

would bloat the hardware by requiring an execution

stack.

Since state events cannot be precisely located an-

yway, all conditions are covered implicitly by the

noEvent(…) function. Algebraic loops containing

discrete variables would require event iteration. This

case is detected by the SimulationX Modelica com-

piler which displays an appropriate message. The

integration formulas for computing the values of

continuous states from their derivatives are intro-

duced in an early stage of the compilation process.

This enables symbolic simplifications on these parts

of the algorithm too. We use Euler’s forward integra-

tions method, which is a good compromise between

computational effort and stability.

The SimulationX compiler produces either C

code or a bytecode representation for simulation. We

extended its capabilities to generate an XML-based

assembler-like intermediate representation to be pro-

cessed by the FPGA-centric tooling. The instruction

set was chosen to match hardware capabilities. For

example, op-codes for common mathematical opera-

tors exist which allow fixed point and floating point

operands of arbitrary sizes. The resulting behavioral

description basically contains two procedures:

 Initialization part

 Iteration part

The initialization part is an algorithm which com-

putes initial variable values from all model parame-

ters. It may also perform some non-trivial computa-

tion, such as iteration to find consistent state values.

Since it is executed only once (at the beginning of

the simulation), it is not time critical. The iteration

part contains the actual computation which is per-

formed during simulation. It is a function of model

inputs and state, transforming those quantities into

output and new state. This algorithm gets iterated for

each time step and therefore must have a predictable

and bounded execution time.

6.3 Scheduling

When mapping an algorithm to hardware, three fun-

damental tasks need to be distinguished:

 Scheduling assigns execution time (i.e. clock

tick) to each instruction.

 Allocation determines which hardware func-

tional units (FUs) to instantiate and in which

quantities. For each instruction there must be

at least one FU which can execute it.

Figure 6: Overall model compilation and synthesis flow

Cycle-
accurate

specification

RTL
specification
w/o control

path

Complete
RTL

specification

Interme-
diate

represen-
tation

VHDL & IP core
generation

Synthe-
sizable

hardware
design

Synthesis Netlist Implemen-
tation

FPGA
Bitfile

FPGA vendor-specific toolchain

Simulation/
Verification

Model Flattening &
expansion

Unordered
differential
equations

Modelica
compilation

2

Synthesis
configuration

IP core
repository

Scheduling,
allocation,

binding

3

Interconnect
allocation

4
Control/data

path
construction

5

SimulationX processing

High-level synthesis

Interface
configuration

I/O
constrained

model

1

6

7

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

360 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

 Binding assigns each instruction to a FU. It

must ensure that no two instructions are as-

signed to the same FU at the same time. It

should also account for interconnection costs

which are induced by its choice.

Superscalar processors perform scheduling and bind-

ing dynamically (allocation is determined by manu-

facturing). They analyze the incoming instruction

stream for data dependencies and schedule them au-

tomatically. A tremendous amount of logic is re-

quired to achieve such functionality. Recreating su-

perscalarity on an FPGA is not a viable option. In-

stead, a static schedule is pre-computed. Another

advantage is that execution time is completely pre-

dictable.

Our prototype employs the force-directed sched-

uling algorithm (FDS, [20]). FDS is a time-

constrained approach which exploits instruction-

level parallelism. Its input is a control-/data-flow

graph (CDFG) and a time constraint. Upon success,

it returns a schedule which heuristically minimizes

the amount of required FUs. Generous time con-

straints lead to fewer FUs and therefore reduce re-

source consumption. Figure 7 shows the scheduled

CDFG of a DC motor model. The model itself will

be introduced in Section 7. Each rectangle depicts a

variable/constant load/store instruction whereas each

circle depicts an arithmetic operation. In the given

example, multiplication was configured to last three

cycles, addition/subtraction two cycles.

6.4 Allocation and binding

Allocation and binding are downstream stages to

scheduling. The schedule determines the minimum

amount of FU instances of each kind which are re-

quired. It does not prescribe which instance will ac-

tually execute a specific instruction. Binding multi-

ple staggered instructions to the same FU is called

resource sharing. Obviously, sharing is desirable,

since it helps to reduce the area of the overall hard-

ware design. On the negative, it can lead to perfor-

mance degradation. Input multiplexers will be neces-

sary to select from different operands. They increase

the combinatorial delay and may affect the clock

rate. If the operand sources get placed at far-off chip

locations, routing delays will further drop the clock

rate.

We employ a heuristic to tackle the problem. Our

algorithm sequentially assigns each instruction to an

FU by either allocating a new FU instance or reusing

a previously allocated one. In case of reuse, assign-

ments that reuse existing interconnect are preferred.

If reusing any previously allocated FU would require

overly large multiplexers, a new FU is allocated in-

stead.

×

h

last_J_alp

last_J_om

+

last_der_i

×

J_om :=

last_i

+

-

V_i :=

J_om

abs

×

10-5 ×

V_i

kT

×

-

L-1

R

×

×

V_in

×

+

kEMF

×

×

-

-

J_J-1

×

×

-

last_J_alp :=

last_der_i :=

last_i :=

0

1

2

4

6

7

8

9

10

11

12

13

14

16

17

18

19

20

22

23

24

26

29 I :=

last_J_om :=
Om :=

a

a

a

b

c

c

d

e

f

g

h

h

i

k

l

m

n

o p

q

Figure 7: Scheduled and bound CDFG of a DC

motor with quadratic friction

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 361
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

The result of allocation/binding the DC motor CDFG

is shown in Figure 7: Characters inside diamonds

enumerate the FU instances which the operations

were mapped to. The operating point was set to spare

resource sharing in favor of performance. Moreover,

the outcome suggests that the binding procedure was

able to identify the most economic candidates for

resource sharing: The multiplications in control steps

1 and 7 are mapped to the same hardware multiplier.

This is reasonable, since both operations share the

common operand h.

The set of instantiable FUs is provided by an IP

core repository. It must hold an according FU type

for each kind of instruction. The repository is assem-

bled from hand-written cores as well as vendor-

specific IP cores. The latter are shipped with the

FPGA toolchain and provide off-the-shelf implemen-

tations of complex arithmetic units, such as floating

point operators, trigonometric operators and square-

root.

6.5 Interconnect allocation

Once the complete instruction stream is scheduled

and bound to appropriate FU instances, an intercon-

nect network is constructed. It is responsible for

routing operational results to their target FUs. The

schedule may also require the network to buffer in-

termediate results. This happens if a result is not pro-

cessed within the same clock step it was produced.

Thus, the interconnect network is composed of mul-

tiplexers and flip-flops.

We developed an incremental merging heuristic

which considers both register count and multiplexer

size. An initial solution is constructed by assigning

each instruction outcome to an individual storage

register. Afterwards, register pairs are iteratively se-

lected and merged whereby the merging decisions

try to balance the multiplexer sizes of the overall

interconnect structure.

6.6 Control path construction

The control path is a hardware unit which con-

ducts the temporal interaction of all data path com-

ponents. This includes asserting handshake signals

and setting an input selection for each multiplexer.

After the scheduling, allocation/binding and inter-

connect allocation steps have been completed, the

control path is completely specified in its behavior. It

just needs to be expressed by an explicit implementa-

tion. In the scope of this contribution, an FSM repre-

sentation was chosen. Each control step of the

schedule constitutes one state. A VHDL process

steps the state forward with each rising clock edge.

Another combinatorial process computes appropriate

settings for handshake signals and multiplexers,

based on the current state. FSM descriptions are rec-

ognized by FPGA synthesis tools. These try to infer

an optimal hardware representation for the given

FSM. To support optimal inference, we represent the

state variable using a VHDL enumeration data type.

This gives VHDL synthesis a chance to choose an

optimal state encoding [21].

6.7 Source code generation

The generated design involves VHDL source code,

but also parameterization scripts for vendor-specific

IP cores which were instantiated from the IP core

repository. Although our approach is conceptually

independent of device technology, the generated de-

sign is technology-dependent if it involves vendor-

specific IP cores. So far, Xilinx FPGAs are support-

ed.

7 Results

Figure 8: Sample model

We demonstrate the transformation process using the

model of a DC motor (Figure 8). The motor is con-

nected to an inertia and a load torque with quadratic

dependency on speed. This is the typical behavior of

a fan. The voltage at the voltage source (V.v) is

used as input, current (V.i) and motor speed

(J.om) are the outputs.

The generated VHDL code is synthesizable on an

FPGA. All Real variables of the Modelica model

are represented by fixed point numbers with 32 bits

precision at inputs and outputs. Intermediate results

are processed at higher precision. The proportioning

into integral and fractional part was done individual-

ly for each quantity, with respect to its range of val-

ues. Figure 9 compares the output values of the

VHDL code to the simulation results, using the Euler

forward method and a step size of 1 µs. The motor is

fed by a voltage jump of 12 V. The simulation re-

sults are reproduced with sufficient accuracy. Minor

deviations are caused by the fixed point representa-

tion of the variables in VHDL.

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

362 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

Figure 9: Simulation results (red) and FPGA re-

sults (blue)

To achieve synchronized data transfer, the design

unit is equipped with additional handshake signals.

These signals control initialization and model

evaluation. Figure 10 shows the basic structure of the

resulting hardware design unit. Model initialization

and evaluation are separated into two individual

FSMs which share a register bank. Asserting the

Init signal causes the initialization procedure to

capture and preprocess all parameters. This includes

precomputing the reciprocals of moment of inertia

(J_J) and rotor coil inductivity (L). Since division is

a costly hardware operation, this step improves

runtime performance.

L

J_J

L-1

J_J-1

Init InitDone

h

R

kT

h

kT

R

V.v

V.i

J.omNextStep

NextStepDone

Figure 10: Architectural overview of the genera-

ted hardware design unit

Figure 11 shows the interplay of all handshake sig-

nals. Once the initialization is complete, model eval-

uation is controlled by the signals NextStep and

NextStepDone. As noted in Section 3, the latencies

of arithmetic operators are design parameters and

affect computation time, clock rate and chip area.

Although low latencies reduce the overall computa-

tion time, this usually comes at the cost of clock rate.

Figure 11: Initialization and runtime behavior of

the design unit

The goal was integrate the generated design into

SET’s EME hardware. Due to the hardware require-

ments, the design must achieve a clock rate of 100

MHz on a Virtex-5 LX110 device and complete any

model evaluation within 1 µs. Consequently, the

schedule of the overall computation (an example is

given in Figure 7) must not exceed 100 clock cycles.

Using three different configurations, we generated

corresponding design variants.

Table 1: Characteristics of the generated designs

Lmul Ladd Ltot Slice usage Fmax (MHz)

1 1 17 5% 89

3 2 30 6% 105

9 3 43 6% 102

Table 1 summarizes the characteristics of the

generated designs. The columns depict, from left to

right: 32×32 bit multiplication latency, 32 bit addi-

tion latency, schedule length of model evaluation,

slice usage and maximum achievable clock rate after

placing and routing the design on the target device.

Slice usage is an approximate measure of the chip

area which is consumed by the hardware design.

Although the first variant provides the fastest

computation time, it does not reach the target fre-

quency of 100 MHz. The remaining two alternatives

are both viable. However, the second option is supe-

rior compared to the third one. It provides an overall

input/output latency of 400 ns at 100 MHz, including

handshake-induced wait cycles. This is more than

sufficient to meet the requirement of 1 µs.

8 Conclusions and Outlook

The toolchain approach described in this document

will allow the efficient realization of flexible electric

motor emulators. The combined model of motor and

drivetrain is built using the FPGA-aware Modelica

library. The resulting model is automatically trans-

formed to an FPGA design. The FPGA controls the

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 363
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

EME hardware. Although the computation needed to

accomplish a DC motor simulation is manageable, its

hardware implementation introduces many new de-

grees of freedom: architecture, scheduling, resource

allocation and binding, parameterization of arithme-

tic data types and corresponding hardware operators.

Designing such hardware manually is a complex and

time-consuming task. If the first draft does not meet

the design goals, alternative implementations need to

be explored, multiplying the effort. This contribution

will allow an EME operator to model an application

using SimulationX and link it directly to the hard-

ware – even with moderate FPGA knowledge.

One of the next steps in our joint research project

is the semi-automatic determination of the optimum

fixed point representation for the model variables. A

compromise between accuracy and occupied FPGA

resources is to be found. It is also conceivable to re-

alize a hybrid approach which combines fixed and

floating point arithmetic in a single model, based on

cost/accuracy tradeoffs.

Another field is the convenient subdivision and

numerically robust reconnection of sub models. This

becomes eminent as soon as a complex model ex-

ceeds FPGA resources. In this case, slow sub models

could be computed on a microprocessor, and only

the fast parts run on the FPGA.

The presented work is not restricted to electric

motor emulation. It would be highly interesting to

evaluate it for implementing sophisticated control

algorithms on FPGA devices, based on Modelica

models.

9 Acknowledgment

The presented work was accomplished within the

project SimCelerate, which is funded by the Federal

German Ministry of Education and Research (grant

no. 01M3196C).

References

[1] Winkler D., Gühmann C. Hardware-in-the-Loop simu-

lation of a hybrid electric vehicle using Modeli-

ca/Dymola. Yokohama, Japan: The 22nd International

Battery, Hybrid and Fuel Cell Electric Vehicle Sympo-

sium & Exposition, Japan Automobile Research Insti-

tute, 2006

[2] Köhl, S., Himmler, A.: Anwendungen und Trends bei

der HIL-Simulation. Simulation und Test in der Funk-

tions- und Softwareentwicklung für die Automobil-

elektronik II, expert verlag, Berlin, 2008, pp. 203-217

[3] SET GmbH Echtzeit-Emulation beschleunigt die Ent-

wicklung, Funktions- und Leistungstests von E-Motor-

Steuergeräten, Makt&Technik Vol. 27, 2010-05

[4] Liebau H., Jakoby H., Crepin, J.: HiL-Simulation

elektrischer Fahrzeugantriebe. Automotive Engineering

Partners, Vol. 2011-05

[5] Zhou Y. J., Mei T. X., FPGA based real time simula-

tion of electrical machines, Proc. 16th IFAC World

Congress, 2005

[6] Matar M., Iravani R., Massively parallel implementa-

tion of AC machine models for FPGA-based real-time

simulation of electromagnetic transients, IEEE Trans-

actions on Power Delivery, Vol. 26, No. 2, pp. 830-840

2011

[7] Chen H., Sun S., Aliprantis D., Zambreno J., Dynamic

simulation of electric machines on FPGA boards, Elec-

tric Machines and Drives Conference, 2009

[8] Köllner C., Yao H., Müller-Glaser K. D.: Entwurfsme-

thodiken zur Echtzeitsimulation physikalisch motivier-

ter Modelle auf FPGAs: Eine Fallstudie. Methoden und

Beschreibungssprachen zur Modellierung und Verifika-

tion von Schaltungen und Systemen (MBMV), 2011.

[9] Dufour C., Belanger J., Lapointe V., and Abourida S.,

“Real-time simulation on FPGA of a permanent magnet

synchronous machine drive using a finite-element

based model,” Symposium on Power Electronics, Elec-

trical Drives, Automation and Motion (SPEEDAM),

2008

[10] Nordström U., López J. D., Elmqvist H., Automatic

Fixed-point Code Generation for Modelica using

Dymola, Proc. Intl. Modelica Conf., 2006

[11] VHDL Analog and Mixed-Signal Extensions, IEEE

Std. 1076.1-1999

[12] Coussy P., Morawiec A. High-Level Synthesis: from

Algorithm to Digital Circuit. Springer Netherlands,

2010.

[13] Grant M., Smith G. High-Level Synthesis: Past, Pre-

sent, and Future. Journal: IEEE Design and Test of

Computers. Vol. 26, pp. 18-25, 2009.

[14] Nyström K., Aronsson P., Fritzson P., Parallelization in

Modelica, Proc. 4th Intl. Modelica Conf., 2005

[15] Elmqvist H., Otter M. and Cellier F.E.: Inline Integra-

tion: A New Mixed Symbolic/Numeric Approach for

Solving DAE Systems. Proc. ESM'95, European Simu-

lation Multiconf., 1995.

[16] Johnson J., Chagnon T., Vachranukunkiet P., Nagvaja-

ra P., Nwankpa C., Sparse LU Decomposition using

FPGA, International Workshop on State-of-the-Art in

Scientific and Parallel Computing (PARA), 2008

[17] Daga V., Govindu G., Prasanna V., Gangadharpalli S.,

Sridhar V., Floating-point based block LU decomposi-

tion on FPGAs, Proc. Intl. Conf. on Engineering Re-

configurable Systems, 2004

[18] Gonzalez J., Núñez R. C. LAPACKrc: Fast linear alge-

bra kernels/solvers for FPGA accelerators. Journal of

Physics: Conference Series. 2009

[19] Fischer T., Entwurf eines FPGA-Cores zur Simulati-

onsbeschleunigung zeitkontinuierlicher Modelle im

HiL Kontext. GI Fachtagung Echtzeit 2011 -

Herausforderungen durch Echtzeitbetrieb, 2011

[20] Paulin P. G., Knight J. P. Force-directed scheduling in

automatic data path synthesis. Proc. 24th ACM/IEEE

Design Automation Conf. (DAC), 1987

[21] Xilinx, Inc. Synthesis and Simulation Design Guide.

UG626 (v13.4), 2012

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

364 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

