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Abstract

The object of this paper is to present an universal
model that describes the gear contact between two
gears in a planar environment. The model includes
elastic effects between the gear wheels. Using this
model it is possible to create arbitrary spur gear con-
nections as well as all kinds of epicyclic gearing
configurations by supplying the proper external con-
straints. The presented model is implementated in the
Modelica language and Dymola is used for the simu-
lations.
Keywords: Elasticity, Gearbox, Epicyclic Gearing,
System Modeling

1 Introduction

Gear transmissions are widely used in almost all engi-
neering applications. These range from cheap plastic
consumer printers, aircraft actuators up to high pre-
cision positioning drive systems. The design of these
transmissions is dependent on the application. This de-
sign process ranges from "‘looking up a standard gear
in a catalog and hope it will work"’ up to detailed dy-
namic analysis using Finite Elements Methods.
At the moment gear research is mainly focused on the
understanding of gearboxes. Özgüven and Houser [4]
wrote a model review in 1988, Parey and Tandon [6]
did the same in 2003. These works present a good
overview of the work done up till that time. More re-
cent works can be sorted into 3 groups:

1. Rigid models or simple elastic systems with only
rotational degrees of freedom [7, 3]

2. Coupled torsional and transversional elastic
models[9, 1, 8, 5]

3. Self excited gears models; gear eccentricitiy,
transmission errors and stiffness variations [3, 1,
9, 5]

Some of these mentioned works have friction effects
included. Most of the recent works include a full
transversional-torsional coupled model including ei-
ther detailed friction effects or self excitation. There
is a clear trend on an increasing model detail and com-
plexity.
However, all the models above, are not flexible when
gearing configurations like compound planetary gears
or even more exotic configurations are used. In the
pre-design stage of such a gearbox, reduction ratios as
well as internal vibrations are usually important. In
this paper a model will be presented that can simu-
late arbitrary elastic gearbox configurations by relying
on a planar library. This approach makes it very easy
to evaluate several model configurations without a lot
of design work. To keep the simulation time low, the
presented model does not include any friction effects,
since they are often not directly necessary in the pre-
design stage.

2 Gear Forces and Equations

In this chapter the forces and torques on the gear
wheels are evaluated. Since these forces and torques
differ for internal- and external toothing, these aspects
are treated as separate cases.

2.1 Force and Moment balance of external
toothing

In Figure 1 a schematic overview of two gear wheels
in contact are shown. The rotation of the gear wheels
are φA and φB, shown by the angles to the body-fixed
red and blue markers on the gear wheels.
The gear ratio is defined by:

rA

rB
=−i (1)

This ratio is constant for each gear angle and position.
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Figure 1: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure φ̇A > 0 and Gear A drives
Gear B.

Figure 2 shows a free body diagram of the two gears
in contact. The forces of only one contact point are
displayed.
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Figure 2: Free body diagram of the two gearwheels
from Figure 1.

Using Figure 2, it is possible to create the torque and
force balances of each gear wheel for external toothing
configurations. These forces and torques are resolved
in the fixed coordinate system shown in Figure 2. The
use of a fixed coordinate system and gear angle φgear

makes it possible to use the contact model also in more
complex gear systems (e.g. all kinds of Epicyclic gear-
ing configurations).

τA = FnrA (2)

τB = FnrB (3)

FxA =−sin(φgear)Fn (4)

FyA = cos(φgear)Fn (5)

FxB =−FxA (6)

FyB =−FyA (7)
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Figure 3: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure ωA > 0 and Gear A drives
Gear B.

2.2 Force and Moment balance of internal
toothing

Just like in Section 2.1, the force and moment balance
can be created by examining Figure 3 together with
Figure 4:

τA = FnrA (8)

τB =−FnrB (9)

FxA =−sin(φgear)Fn (10)

FyA = cos(φgear)Fn (11)

FxB =−FxA (12)

FyB =−FyA (13)

3 Meshing distance

To keep track how the gear wheels move with respect
to each other, the mesh distance xmesh is introduced.
This distance is defined as the distance the gear has
traveled through the meshing point and can be calcu-
lated for both gear wheels. For the complete descrip-
tion of the mesh position the following assumption is
postulated:

Assumption 1 The mesh contact position is on the di-
rect connection between the center of gear A and B at
a distance rA from the center of A
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Figure 4: Free body diagram of the two gearwheels
from Figure 3.

This assumption is valid for all cases in which the de-
formation of the tooth is small. In all engineering ap-
plications this must be the case for gearwheels under
normal loading conditions.

3.1 Mesh Distance External Toothing

For external toothing the mesh distance can be cal-
culated as follows using the geometry and definitions
from Figure 1.

xmesh,A = φArA−φgearrA (14)

xmesh,B =−φBrB +φgearrB (15)

From this equation it becomes clear that the mesh dis-
tance (xmesh,A or xmesh,B) can be constant although the
gear wheels are rotating. This is the case if φA = φgear

or φB = φgear. This is not only a theoretical implica-
tion; in e.g. bicycle gear hubs this is often the case.
The difference between the mesh positions is the elas-
ticity of the gear contact:

∆AB = xmesh,A− xmesh,B (16)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
14 to 16 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(17)

3.2 Mesh Distance Internal Toothing

The same analysis method can be applied to the inter-
nal toothing:

xmesh,A = φArA−φgearrA (18)

xmesh,B = φBrB−φgearrB (19)

The difference between the mesh positions is as men-
tioned above the elasticity of the gear contact:

∆AB = xmesh,A− xmesh,B (20)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
18 to 20 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(21)

4 Gear Wheel Coupling

The gear wheels A and B are coupled by a spring-
damper combination. This yields:

Fn = ∆ABc(φgear,φA,φB)+ ∆̇ABd(φgear,φA,φB) (22)

In this equation c(φgear,φA,φB) is the angle dependent
spring constant and d(φgear,φA,φB) is the angle depen-
dent damping constant.

4.1 Position Dependent Stiffness

The angle dependency can be used to simulate a non
constant tooth stiffness. The total tooth stiffness is the
combined stiffness of both gearwheels. Since the cir-
cumference of a gearwheel is periodic by definition,
the following assumption can be postulated:

Assumption 2 The position dependent stiffness and
damping of a gearwheel can be described by a Fourier
decomposition.

One of the most basic forms of Assumption 2 is a sin-
gle harmonic with zero phase offset that represents the
tooth of the gear wheel. The stiffness over the circum-
ference of a gearwheel can therefore be written as:

cA(γA) = cconst + c∆,A sin(2πntooth,AγA) (23)

cB(γB) = cconst + c∆,B sin(2πntooth,BγA) (24)

In this equation γA is the angle which describes the po-
sition of the material on the gear wheel. The stiffness
at the contact position however, is dependent on which
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part of the gearwheel is in contact. The local stiffness
can be obtained for an external gear by using:

γA = φA−φgear (25)

γB =−φB +φgear (26)

Substituting Equations 25 and 26 into Equations 23
and 24 leads to the stiffness at the contact position.

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(27)

ccont,B = cconst + c∆,b sin(2πntooth,B(−φB +φgear))
(28)

An internal gear configuration would yield:

γA = φA−φgear (29)

γB = φB−φgear (30)

leading to a contact stiffness of:

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(31)

ccont,B = cconst + c∆,B sin(2πntooth,B(φB−φgear))
(32)

The overall stiffness can be calculated by putting both
springs in series:

c =
(

1
ccont,A

+
1

ccont,B

)−1

(33)

5 Modelica Implementation

The presented gear contact model must be supplied by
constraints in the x, y and φ direction (standard planar
constraints). The Planar library from D. Zimmer [11]
is used to supply these constraints. Features like (rota-
tional) bearings, connection rods, inertias e.g. are all
represented. The library will be used to create the total
gearbox setup.
Implementation of the gear model in Modelica is
straightforward using the sections above. The gear
model is implemented with 2 planar interface connec-
tors; each with 3 degrees of freedom (x,y,φ ). These
connectors are the connections to the gearwheels A and
B. To sense the total revolution angle φgear (φgear ∈R),
the atan3 function is modified to supply a continuous
and differentiable angle.
In Figure 5 the icons of the gear models are shown. No
inertia’s or constraints are included in the model.
Using the planar library, it is possible to create all kind
of different gear configurations. Everything between

Figure 5: Modelica Icon of the inner and outer gear-
wheel connections

Figure 6: Spur Gear in Dymola

simple spur gears models (Figure 6 and 7) up to com-
plex epicyclic gearing configurations (Figure 8 and 9)
is easily generated. In these models, the gearbox mod-
els (Figure 5) are defined as described in this paper, all
other components are components of the planar library
(see [11]).

6 Simulation Results

6.1 Eigenfrequency Analysis

Using the Modelica LinearSystems2 library, it is pos-
sible to create a Bode-Diagram of a linear system.
Since a linear spring and damper are used for the con-
tact stiffness, is is possible to use this toolbox. Using
an eigenfrequency analysis it is possible to check the

Figure 7: Spur Gear in Dymola
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Figure 8: Epicyclic Gear

Figure 9: Epicyclic Gear

behavior of the models.

6.1.1 Spur Gear Analysis

A Single Input Single Output (SISO) system of a sim-
ple spur gear model (as shown in Figure 6) is gener-
ated by applying a torque input on gearwheel A, and
using as output the angular position of gearwheel B.
The Bode-Diagram of this system 1 is shown in Fig-
ure 10. In the diagram a clear peak can be found
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Figure 10: Bode-Diagram of the spur gear from Figure
6

at 0.225 Hz. This is exactly the expected frequency

ω =

√
k
m

2π
=

√
2
1

2π
∼= 0.225. The stiffness k = 2 N

m and
mass m = 1kg have to be used since the system is a
symmetrical system using only one spring (see e.g.
[2]). Lowering of the eigenfrequency due to damping
can be neglected due to the low damping coefficient.

6.1.2 Epicyclic Gear Analysis

A SISO system is created by defining an input torque
on the sun (middle (blue) gear in Figure 9), as output
the angular position of the carrier (grey structure). The
Ring (red) is fixed, thereby eliminating vibrations of
the ring structure. Each small planet is coupled to the
planet rotating on the same axis. All bodies have the
following properties: Mass 1 kg, Inertia 1 kgm2. All
gear connections have a stiffness of 1 N

m , and a damp-
ing coefficient of 1e-3 Ns

m . The radius of the sun is

1The bodies have a rotational inertia of 1 kgm2, the spring con-
stant of the gear is 1 N

m , and a damping coefficient is 1e-3 Ns
m . Both

gearwheels have a radius of 1m.
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1m, the connecting planet has a radius of 0.5m. The
other gear part of the stepped planet has a radius of
1m. The ring has a diameter of 2.5m. Using this set
up, a Bode-Diagram is made (see Figure 11). When
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Figure 11: Bode-Diagram of the epicyclic gear from
Figure 8

evaluating the Bode diagram, two peaks and a single
dip can be found in the magnitude diagram. These
features correspond to the 3 eigenfrequencies of the
system. The fact that only 3 peaks can be found in the
Bode diagram is due to the fact that the planets all have
the same masses and stiffnesses. When the stiffness of
one of the Sun-Planet gear connections is lowered to
0.5 N

m , another peak and dip in the magnitude diagram
occurs, since now one of the planets will swing in an
other frequency as the others (see Figure 12).

6.2 Internal vibrations

In Section 4.1 the possibility of an internal excitation
of the gear through varying stiffness is shown (to sim-
ulate gear mesh effects). A demonstation of this ex-
citation is shown for a simple spur gear. Gear A is
accelerated from 0 rad

s to 1 rad
s with a constant acceler-

ation. A radius of 1m and 10 teeth for both gearwheels
are assumed for this calculation. The constant tooth
stiffness in the simulation is 1 N

m , the stiffness ripple on
both wheels is assumed to be 0.1%. Using a damping
coefficient of 0.2 Ns

m this yields a lightly damped sys-
tem with a damping ratio ς ≈ 0.071. In Figure 13 the
elastic deformation (∆AB) of the gear is shown.
In Figure 13 also shows that the system is excited by
the internal mesh stiffness variation. The response of
the system is the largest when the eigenfrequency of
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Figure 12: Bode-Diagram of the epicyclic gear from
Figure 8 with reduced stiffness of one of the gear con-
tacts.

Figure 13: Time simulation of an elastic spur gear with
increasing velocity.

the system approximates the excitation by the stiffness
variation.

7 Conclusion

In this paper a model is presented to describe the con-
tact between two gear wheels. Using an external pla-
nar library, it is possible to model arbitrary gear con-
figurations ranging from simple spur gears up to com-
plex epicyclic gear configurations. An option to simu-
late gear meshing effects by varying the stiffness of the
gear contact is presented. The presented models make
it possible to analyze complex gear configuration by
means of time simulations as well as eigenfrequency
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analyses. The presented simulation results show the
power of the method, and illustrate the capability of
the model.
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