
A Modelica Sub- and Superset for Safety-Relevant
Control Applications

Bernhard Thiele∗ Stefan-Alexander Schneider† Pierre R. Mai‡

Bernhard.Thiele@dlr.de stefan-alexander.schneider@bmw.de pmai@pmsf.de

∗ German Aerospace Center (DLR), Institute for Robotics and Mechatronics, Germany
† BMW AG, 80788 München, Germany

‡ PMSF IT Consulting, Marzling, Germany

More and more embedded software components are specified in models representing the
so-called high-level application that is then automatically transformed (usually via embed-
ded C-code) into binary code that is executable on the embedded target. Despite Modelica’s
obvious suitability to efficiently create appropriate high fidelity system models, the utiliza-
tion of Modelica for developing discrete control functions is not yet wide spread.

This can be attributed to: a) a somewhat too limited expressiveness in modeling discrete
controller functions; b) the lack of a flexible, seamless development approach from the
controller model comprising the logical functions to the technical system architecture (i.e.,
code running on the target platform) and last but not least c) because safety-relevant software
functions need means to achieve a high assurance level, which is not supported with current
Modelica (tools).

The aim of the paper is to study impacts of a safety-relevant development process (based
on validated tools) to high-level, domain-oriented modeling languages (see Figure 1). In
particular it proposes a sub- and superset of the modeling language Modelica suitable for
safety-relevant software development, including tool validation. To illustrate the develop-
ment using the proposed language elements an exemplary library (referred to as SAFEDIS-
CRETECONTROL library) is presented and applied at an exemplary use case.

Keywords: embedded systems; functional safety; simulation; code generation; com-
piler; formal methods; validation; verification

Specification 
Model

Clock 
Source

Reference

Plant

Modelica 
Language

High-Level 
Application 

Model

Code 
Generation 

Model

Proposed Modelica 
Sub- and Superset

Enrichment with 
implementation details

Function
C-Code

Binary

Result Value

Code Generator

Cross-Compiler/Linker

Target ProcessorStimuli

Bit-accurate 
compare

Reference Interpreter

Result Value

Environment 
Model

Adequate Set of 
Test Models

Proposed Validation Suite 
approach to enable 

qualification of (Modelica) 
development tools

Figure 1: From High-Level Application Models (Specification Models) to code generation
models utilizing a qualifiable sub- and superset of the Modelica language.


