IndustrialControlSystems.LinearSystems.Continuous

Continuous time linear systems

Information

  

Description

Continuous time blocks

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

NameDescription
IndustrialControlSystems.LinearSystems.Continuous.Integrator Integrator Integrator: mu/s
IndustrialControlSystems.LinearSystems.Continuous.FirstOrder FirstOrder First order process: mu/(1+tau*s)
IndustrialControlSystems.LinearSystems.Continuous.LeadLag LeadLag Lead lag process: mu(1+T1*s)/(1+T2*s)
IndustrialControlSystems.LinearSystems.Continuous.ComplexPoles ComplexPoles Process with complex poles
IndustrialControlSystems.LinearSystems.Continuous.TwoPolesTwoZeroes TwoPolesTwoZeroes Process with an integrator, 1 pole and 2 zeroes: mu(1+sT1)(1+sT2)/(1+sT3)s
IndustrialControlSystems.LinearSystems.Continuous.TransferFunction TransferFunction Model of a generic rational transfer function [a(m)*s^m + a(m-1)*s^(m-1) + ... + a(1)*s + a(0) ]/[b(n)*s^n + b(n-1)*s^(n-1) + ... + b(1)*s + b(0) ]
IndustrialControlSystems.LinearSystems.Continuous.Delay Delay Time delay
IndustrialControlSystems.LinearSystems.Continuous.SmithDelay SmithDelay Time delay block for Smith's predictor

IndustrialControlSystems.LinearSystems.Continuous.Integrator IndustrialControlSystems.LinearSystems.Continuous.Integrator

Integrator: mu/s

Information

  

Description

Continuous time transfer function of an integrating process.

   Y(s)      mu
   ----  = ------
   U(s)      s
  

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
mu Gain
Initial conditions
y_start output initial value

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.FirstOrder IndustrialControlSystems.LinearSystems.Continuous.FirstOrder

First order process: mu/(1+tau*s)

Information

  

Description

Continuous time transfer function of first order process.

   Y(s)         mu
   ----  = ------------
   U(s)      (1+s*tau)
  

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
tau pole's time constant
mu Gain
Initial conditions
y_start output initial value

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.LeadLag IndustrialControlSystems.LinearSystems.Continuous.LeadLag

Lead lag process: mu(1+T1*s)/(1+T2*s)

Information

  

Description

Continuous time transfer function of a lead lag process.

   Y(s)        (1 + s*T1)
   ----  = mu ------------
   U(s)        (1 + s*T2)
  

The time constant T1 must be different from T2.

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
T1 zero's time constant
T2 pole's time constant
mu Gain
Initial conditions
y_start output initial value

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.ComplexPoles IndustrialControlSystems.LinearSystems.Continuous.ComplexPoles

Process with complex poles

Information

  

Description

Continuous time transfer function of a process with complex poles.

   Y(s)                      1
   ----  = mu ------------------------------------
   U(s)        (1 + s*2*xi/omegan + (s/omegan)^2)
  

The damping coefficient xi must be between [0,1].

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
xi Damping coefficient
omegan Natural frequency
mu Gain
Initial conditions
y_start Output initial value
dy_start Slope initial value

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.TwoPolesTwoZeroes IndustrialControlSystems.LinearSystems.Continuous.TwoPolesTwoZeroes

Process with an integrator, 1 pole and 2 zeroes: mu(1+sT1)(1+sT2)/(1+sT3)s

Information

  

Description

Continuous time transfer function of a process with an integrator, one pole and two zeroes.

   Y(s)        (1 + s*T1)*(1 + s*T2)
   ----  = mu ----------------------
   U(s)            s*(1 + s*T3)
  

The time constants T1 and T2 must be different from T3.

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
mu Gain
T1 first zero's time constant
T2 second zero's time constant
T3 pole's time constant
Initial conditions
y_start Output initial value

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.TransferFunction IndustrialControlSystems.LinearSystems.Continuous.TransferFunction

Model of a generic rational transfer function [a(m)*s^m + a(m-1)*s^(m-1) + ... + a(1)*s + a(0) ]/[b(n)*s^n + b(n-1)*s^(n-1) + ... + b(1)*s + b(0) ]

Information

  

Description

Continuous time transfer function, defined by its numerator and denumerator.

   Y(s)     a(m)*s^m + a(m-1)*s^(m-1) + ... + a(1)*s + a(0) 
   ----  = -------------------------------------------------
   U(s)     b(n)*s^n + b(n-1)*s^(n-1) + ... + b(1)*s + b(0)
  

The order of the numerator cannot be higher than the denumerator one: m <= n.

Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
Block parameters
num[:] Numerators coefficients (4*s + 2) is {4,2}
den[:] Denumerators coefficients (4*s + 2) is {4,2}
Initial conditions
y_start Output initial value
initOutput Initialise the output
initSteadyState Initialise at steady state
initSteadyOutput Initialise at steady output

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.Delay IndustrialControlSystems.LinearSystems.Continuous.Delay

Time delay

Information

  

Description

Continuous time delay.

   Y(s) = e^(-s*T)*U(s)
  

The delay must be positive T >= 0.

Extends from LinearSystems.Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
TFixed delay time

Connectors

NameDescription
uinput
youtput

IndustrialControlSystems.LinearSystems.Continuous.SmithDelay IndustrialControlSystems.LinearSystems.Continuous.SmithDelay

Time delay block for Smith's predictor

Information

  

Description

Continuous time delay block for the Smith's predictor.

   Y(s) = (1 - e^(-s*T))*U(s)
  

The delay must be positive T >= 0.

Extends from LinearSystems.Interfaces.BaseBlock (Partial continuous time block interfaces).

Parameters

NameDescription
TFixed delay time

Connectors

NameDescription
uinput
youtput

Automatically generated Mon May 21 13:34:14 2012.