Continuous time blocks
Extends from Modelica.Icons.Package (Icon for standard packages).
Name | Description |
---|---|
![]() | Integrator: mu/s |
![]() | First order process: mu/(1+tau*s) |
![]() | Lead lag process: mu(1+T1*s)/(1+T2*s) |
![]() | Process with complex poles |
![]() | Process with an integrator, 1 pole and 2 zeroes: mu(1+sT1)(1+sT2)/(1+sT3)s |
![]() | Model of a generic rational transfer function [a(m)*s^m + a(m-1)*s^(m-1) + ... + a(1)*s + a(0) ]/[b(n)*s^n + b(n-1)*s^(n-1) + ... + b(1)*s + b(0) ] |
![]() | Time delay |
![]() | Time delay block for Smith's predictor |
Continuous time transfer function of an integrating process.
Y(s) mu ---- = ------ U(s) s
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
mu | Gain |
Initial conditions | |
y_start | output initial value |
Name | Description |
---|---|
u | input |
y | output |
Continuous time transfer function of first order process.
Y(s) mu ---- = ------------ U(s) (1+s*tau)
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
tau | pole's time constant |
mu | Gain |
Initial conditions | |
y_start | output initial value |
Name | Description |
---|---|
u | input |
y | output |
Continuous time transfer function of a lead lag process.
Y(s) (1 + s*T1) ---- = mu ------------ U(s) (1 + s*T2)
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
T1 | zero's time constant |
T2 | pole's time constant |
mu | Gain |
Initial conditions | |
y_start | output initial value |
Name | Description |
---|---|
u | input |
y | output |
Continuous time transfer function of a process with complex poles.
Y(s) 1 ---- = mu ------------------------------------ U(s) (1 + s*2*xi/omegan + (s/omegan)^2)
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
xi | Damping coefficient |
omegan | Natural frequency |
mu | Gain |
Initial conditions | |
y_start | Output initial value |
dy_start | Slope initial value |
Name | Description |
---|---|
u | input |
y | output |
Continuous time transfer function of a process with an integrator, one pole and two zeroes.
Y(s) (1 + s*T1)*(1 + s*T2) ---- = mu ---------------------- U(s) s*(1 + s*T3)
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
mu | Gain |
T1 | first zero's time constant |
T2 | second zero's time constant |
T3 | pole's time constant |
Initial conditions | |
y_start | Output initial value |
Name | Description |
---|---|
u | input |
y | output |
Continuous time transfer function, defined by its numerator and denumerator.
Y(s) a(m)*s^m + a(m-1)*s^(m-1) + ... + a(1)*s + a(0) ---- = ------------------------------------------------- U(s) b(n)*s^n + b(n-1)*s^(n-1) + ... + b(1)*s + b(0)
Extends from Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
Block parameters | |
num[:] | Numerators coefficients (4*s + 2) is {4,2} |
den[:] | Denumerators coefficients (4*s + 2) is {4,2} |
Initial conditions | |
y_start | Output initial value |
initOutput | Initialise the output |
initSteadyState | Initialise at steady state |
initSteadyOutput | Initialise at steady output |
Name | Description |
---|---|
u | input |
y | output |
Continuous time delay.
Y(s) = e^(-s*T)*U(s)
Extends from LinearSystems.Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
T | Fixed delay time |
Name | Description |
---|---|
u | input |
y | output |
Continuous time delay block for the Smith's predictor.
Y(s) = (1 - e^(-s*T))*U(s)
Extends from LinearSystems.Interfaces.BaseBlock (Partial continuous time block interfaces).
Name | Description |
---|---|
T | Fixed delay time |
Name | Description |
---|---|
u | input |
y | output |