
Natural Unit Representation in Modelica

Kevin L. Davies Christiann J.J. Paredis
Georgia Institute of Technology

Atlanta, Georgia USA

Abstract

A method is presented by which alternative systems
of physical units may be represented and utilized in
Modelica. The method may be useful in simulating
models of physical systems where the base units of the
International System of Units (Système international
d’unités, SI)—the standard unit system in Modelica—
are poorly scaled. It also provides a convenient means
to express the values of physical quantities in fields of
science and engineering where data is typically rep-
resented in other systems of units or where the rank
of the system of units is less than that of SI (i.e.,
natural units). By explicitly expressing the value of
a physical quantity as the product of a number and
a unit (where the unit is an algebraic variable), the
method uses variables that are unit-neutral. Unfortu-
nately, workarounds are necessary in order to imple-
ment the method in the current version of the Model-
ica language. Nonetheless, it may be useful in special
applications, and the related discussion may provide
valuable insight. In particular, it is shown that there
is an apparent conflict in the interpretation of “num-
ber” and “value” between Modelica and the Interna-
tional Bureau of Weights and Measures (Bureau Inter-
national des Poids et Mesures, BIPM).
Keywords: natural units; physical quantities; Model-
ica; SI

1 Introduction

In the mathematical representation of physical sys-
tems, the values of quantities are interrelated through
equations that express the behavior of the system over
time and space. As stated by the BIPM [5, p. 103]:

“The value of a quantity is generally ex-
pressed as the product of a number and a
unit. The unit is simply a particular exam-
ple of the quantity concerned which is used
as a reference, and the number is the ratio of
the value of the quantity to the unit.”

In general, a unit may be the product of powers of
other units, whether they are base units or units de-
rived from the base units in the same manner.

In the Modelica language, physical quantities are
typically expressed as instances of the Real type [12,
p. 46]. The value attribute of the instance is the num-
ber associated with the value of the quantity (not the
value of the quantity, as will be seen). The unit at-
tribute is a string that describes the unit by which the
value of the quantity is divided to arrive at the num-
ber.i The displayUnit attribute (also a string) de-
scribes the unit by which the value should be divided
to arrive at the number as it is entered by or pre-
sented to the user. Based on the information provided
by the unit and displayUnit attributes, simulation
tools may perform unit checking and conversion. The
Real type contains other attributes as well, including
quantity, which is another string [8, p. 375].

The SIunits subpackage of the Modelica Standard
Library contains types that inherent from the Real

type. The type definitions appropriately modify the
unit, displayUnit, and quantity attributes (among
others) to represent various physical quantities. The
unit and displayUnit attributes are based on the
SI. The quantity string is generally used to describe
the name of the physical quantity. For example, the
Velocity type has a unit of "m/s" and a quantity

of "Velocity".
If an instance of the Velocity type has a value of

one (v = 1), then it is meant that “the value of velocity
is equal to one meter per second.” Again, the value

attribute represents the number, or the value divided
by the unit, not the value itself. This apparent con-
flict could be solved in one of several ways. First, the
unit could be strictly set equal to be one (1), regardless
of what the unit is. This is the essence of the current
implementation in Modelica. It is also the interpreta-
tion we use when we are working a problem by hand

iHereafter, the value of the quantity is referred to as simply
the value, but it should not be confused with the value attribute
(which, in the current version of the Modelica language, is the
number).

DOI Proceedings of the 9th International Modelica Conference 801
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

and drop the units because we are exclusively using a
particular system of units. However, in this case, the
statement that “the value of a quantity is generally ex-
pressed as the product of a number and a unit” [5] loses
its meaning; it may as well be “the value of a quan-
tity is generally expressed as the number.” Second,
the value attribute could be renamed as the number

attribute. Since the name of a variable is an implicit
reference to this attribute (whatever it is called), the
variable would then represent the number. The third
method of resolution is to let the units (the meter and
the second in this case) be mathematical entities and
let v′ = 1 ·m/s. Here, the variable v′ directly repre-
sents the value. Its value attribute is the value in the
context of the statement by the BIPM.

2 Method

The approach is to follow the third method to resolve
the apparent misnomer of the value attribute—to fac-
tor the units out of the unit attribute and into the
value attribute. This offers the advantage that unit
conversion is handled naturally. The essence of unit
conversion is that the phrase “x (value) in u (unit)” is
interpreted mathematically as “x divided by u.” Con-
tinuing with the previous example, v′ is divided by
m/s in order to display v′ in meters per second (as
a number). The result is simply one (1). If the unit
foot is established through the appropriate relation
(ft ≈ 0.3048 ·m) and v′ is divided by ft/s, the result
is v′ in feet per second (∼ 3.2894).

As another example, systems involving angle are
sometimes evaluated by working with variables in cy-
cles and other times with variables in radians. If the
variable is the value, then “variable in unit” means
“value divided by unit.” If we work with the value
directly, then there is no need to specify which unit we
are working “in.” The unit is included; it has not been
factored out by division. As long as the dimensionality
is correct, the math is equivalent due to the relation-
ships among units (or combinations of units). In this
case, the relevant unit relation is 1 · cycle = 2π · rad.ii

This example extends directly to frequency (angle per
time). Often, different symbols are used for frequency
in Hz (ν) and frequency in rad/s (ω). If the units are
included in the variable f , then f = ν ·Hz = ω · rad/s.

In this method, each unit must be represented by an

iiFurthermore, a cycle is typically equated to the number one
(1). For instance, in SI, a frequency of one hertz (1 ·Hz) is equated
to one per second (1/s) [5] even though to be precise it is one cycle
per second (1 · cycle/s).

algebraic variable (albeit constant). For each unit in-
troduced, it is necessary to add an equation that allows
the unit’s value to be determined. If a unit is consid-
ered to be a derived unit, then the equation simply re-
lates the unit to other units (e.g., 1 · cycle = 2π · rad).
However, there are several units (in SI, 7) that may not
be simply defined via other units. These base units
must be related to something outside of the algebraic
system of equations representing the immediate phys-
ical system. This something is the “particular example
of the quantity concerned which is used as a reference”
quoted previously [5]. The designation of “base” or
“derived” is somewhat arbitrary [8, p. 375], but regard-
less, there are a number of units that must be defined
by example. Considering only the immediate physical
system, these units are linearly independent.

If only the SI will be used, then it is easiest to strictly
set each of the base units of SI equal to one (1)—
the meter (m), kilogram (kg), second (s), ampere (A),
kelvin (K), mole (mol), and candela (cd). This is im-
plicitly the case in Modelica.SIunits, but again, it
hardly captures the idea that a value is the product of a
number and a unit.

There are systems where typical values are many
orders of magnitude larger or smaller than the re-
lated product of powers of base SI units (e.g., the do-
mains of astrophysics and atomic physics). In mod-
eling and simulating those systems, it may be advan-
tageous to choose appropriately small or large values
(respectively) for the corresponding base units such
that the product of the number (large or small in mag-
nitude) and the unit (small or large, respectively) is
well-scaled. Products of this type are often involved in
initial conditions or parameter expressions, which are
not time-varying. Therefore, the number and the unit
can be multiplied before the dynamic simulation. Dur-
ing the simulation, only the value is important. After
the simulation, the trajectory of the value may be di-
vided by the unit for display. This scaling is usually
unnecessary due to the wide range and appropriate dis-
tribution of the real numbers that are representable in
floating point space. The Modelica language specifi-
cation recommends that floating point numbers be rep-
resented in at least IEEE double precision, which cov-
ers magnitudes from∼2.225×10−308 to∼1.798×10308

[12, p. 13]. However, in some cases it may be prefer-
able to carefully scale the units and use single pre-
cision instead for the sake of computational perfor-
mance. There are fields of research where, even today,
simulations are sometimes performed in single preci-
sion [10] and where scaling is a concern [14, p. 29].

Natural Unit Representation in Modelica

802 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

Since there are many systems of units besides the
SI, it is best if the method is neutral with regards
to not only the values of the base units, but also the
choice of the base units and even the number of base
units. As mentioned previously, the choice of base
units is somewhat arbitrary, and different systems of
units are based on different choices. Some systems
of units have fewer base units (lower rank) than SI,
since additional constraints are added that exchange
base units for derived units. For example, the Planck,
Stoney, Hartree, and Ryberg systems of units define
the Boltzmann constant to be equal to one (k = 1)
[15]. The unit K is “eliminated” [9, p. 386] or, more
precisely, considered a derived unit instead of a base
unit. In the SI, the Boltzmann constant would be de-
rived from the base units kilogram, meter, and sec-
ond (K≈ 1.381×10−23 ·kg ·m2/s2). In such a system,
terms that would otherwise be written as kT may be
replaced by simply T ; temperature (T) is considered
to be energy per particle or degree of freedom. In this
case, it is not possible to arbitrarily choose a value for
K.

A unit is considered to be a “natural” unit if it de-
pends only on values of universal physical constants
[15]. If a system of units is purely natural, then all
its base “units” are base “constants.” The “particular
example of the quantity concerned which is used as
a reference” [5] is an experiment that yields precise
and repeatable results in determining a constant rather
than a prototype which is carefully controlled and dis-
tributed via replicas. For instance, a natural unit for
electrical resistance is the von Klitzing constant, and
it can be chosen as a base constant. Often, the base
constants are defined to be equal to one. However, just
as it is not necessary to set base units to one, it is not
necessary to set base constants to one. The values can
be chosen to best scale the numerics of the system.

It is judicious to check that the terms of each equa-
tion have the same dimension. Fortunately, methods
for unit checking have already been established and
implemented in Dymola [11]. In the present context,
those methods can, in theory, be applied to the di-
mension instead (i.e., “dimension checking” instead of
“unit checking”). Again, in the present method, the
unit is included in the value attribute. The question
of which unit the variable is “in” is not applicable, but
it is still possible and appropriate to check the dimen-
sions.

The dimension of a value may be expressed in the
same manner as the unit is in the current version of
the Modelica language [12, Ch. 18]. For SI, it would

be appropriate to use these base dimensions instead of
the corresponding base units: length (L), mass (M),
time (T), electric current (I), thermodynamic temper-
ature (Theta), amount of substance (N), and luminous
intensity (J) [5, p. 105]. In the example that follows,
the Rydberg constant, Faraday constant, and the spe-
cific mass of electrons are all set equal to one. There-
fore, the rank is reduced from seven to four.

3 Implementation

The method is implemented in version 3.2 of the Mod-
elica language [12] and version 7.4 of Dymola [7].
However, the implementation includes several less-
than-ideal workarounds; a full and consistent imple-
mentation would require changes to the language and
the modeling environment (see Sec. 4).

First, it is necessary to define the units and con-
stants as variables. These variables must be declared
in an accessible package so that they can be used in
equations within the declaration, initial, and dynamic
sections of the model and its subclasses. An excerpt
from this Units package is shown in Listing 1. The
top section of the code establishes mathematical con-
stants (in this case, only π). The next section es-
tablishes the base constants and units, which are ad-
justable. The third section establishes the constants
and units which may be derived from the base units
and constants using accepted empirical relations. The
rest of the code (not listed) establishes the SI prefixes
and the remaining derived units and constants. The
SI prefixes are included in their unabbreviated form in
order to avoid name conflicts (e.g., constant Real

kilo(unit="1")=1E3). In a model, a kilometer is in-
cluded as kilo*m, unless km is defined as a stand-alone
unit. All of the primary units of SI are included (Ta-
bles 1 and 3 of [5]) except for ◦C, since it involves an
offset. Other convenient units are included for the sys-
tem at hand (e.g., atm). For convenience, the Units

package is given the abbreviated label U by an import

statement at the top level of the entire library or con-
taining package.

Each unit or constant is a constant Real. The
unit attribute is given a string that describes the di-
mension. The abbreviations l, N, T, and I are used
for length, number, time, and luminous intensity, re-
spectively.iii The dimensions are combined as strings

iiiLowercase “ell” is used so that Dymola 7.4 recognizes it as
a unit—the liter. Dymola also recognizes N as newton and T as
tesla. This is not the meaning here, but there is no problem since
it happens that these three units are orthogonal. As long as lu-

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 803
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

according to the rules established for unit strings in the
Modelica language [12, p. 210].

The units, constants, and prefixes must be identi-
cally defined in Dymola’s workspace so that they can
be used to convert values to numbers for display. The
definitions from the Units package are copied to a
Modelica script. All the specifications of constant
Real and of the unit attribute are removed. It is im-
portant that the base units or constants are declared at
the beginning of the script and all derived units are
arranged in an order that allows the script to succeed
on the first pass. The script is run when Dymola is
launched. Assert statements are added at the end of
the script to perform basic checks on the relationships
among the values.

Now, types must be defined for the required quanti-
ties. Each quantity inherits from the Real type. The
unit attribute is given a string that describes the di-
mension (as in the Units package). The quantity

attribute is not used, since the type is the quantity. The
displayUnit attribute is given a string that describes
the desired unit to be used for display (according to
the format specified in Ch. 18 of [12]). By default, it
is the simplest expression of the unit in SI. For conve-
nience, the package containing the quantities is given
the global, abbreviated label Q.

Another Modelica script is written to define
the unit conversions for display using Dymola’s
defineUnitConversion command. As mentioned
previously, a value is divided by a unit to arrive at a
number for display. This script is executed after the
script that defines the units, constants, and prefixes
(automatically—upon starting Dymola) so that all of
those variables are available. For example, the en-
try for velocity is defineUnitConversion("l/T",

"m/s", s/m).
A top-level “environment” model is included which

stores copies of the base units or constants. With that
information, it is possible to re-derive all of the other
units and constants. This is important in order to prop-
erly interpret simulation results even after the base
units or constants are re-adjusted.

Where the der operator is used, it is explicitly di-
vided by the unit second (e.g., der(x)/U.s). This is
necessary because the global variable time is time in
seconds.

Listing 1: Selected constants from the Units package

// ---

minous intensity is not represented in the model (I, which is not
recognized), unit checking may be used as dimension checking.

// Base physical constants and units

replaceable constant Bases.Default base

constrainedby Bases.Basis

"Scaleable base constants and units";

// Note: The base constants and units may be

// replaced to suit the scale of the physical

// system.

final constant Q.Angle rad=base.rad "radian";

final constant Q.Wavenumber R_inf=base.R_inf

"Rydberg constant (R_∞)";

final constant Q.Velocity c=base.c

"speed of light in vacuum (c)";

final constant Q.MagneticFluxReciprocal k_J=

base.k_J

"Josephson constant (k_J)";

final constant Q.Resistance R_K=base.R_K

"von Klitzing constant (R_K)";

final constant Q.RadiantIntensity 'cd'=base.'cd' "

candela";

final constant Q.Number k_F=base.k_F

"Faraday constant (k_F)";

final constant Q.Number R=base.R "gas constant";

// ---

// Empirical constants and units

// Note: The values are currently based on the

// those from NIST (2010). The measured (rather

// than conventional) values are used.

constant Q.Length m=10973731.568539*rad/R_inf "

meter";

// SI unit of length

// This is the "Rydberg constant" relation (NIST,

// 2010). The unit radian is included to be

// explicit, although it is currently one by

// definition (BIPM, 2006).

// (http://en.wikipedia.org/wiki/Rydberg_constant)

.

constant Q.Time s=299792458*m/c "second";

// SI unit of time or duration

// This is the "speed of light in vacuum" relation

// (NIST, 2010).

constant Q.MagneticFlux Wb=483597.870E9/k_J "weber

";

// SI unit of magnetic flux

// This is the "Josephson constant" relation

// (NIST, 2010).

constant Q.Conductance S=25812.8074434/R_K "siemen

";

// SI unit of electrical conductance

// This is the "von Klitzing constant" relation

// (NIST, 2010). The unit radian is included on

// the denominator for dimensional consistency,

// but it is one by the current defition (BIPM,

// 2006).

constant Q.ParticleNumber mol=96485.3365*Wb*S/k_F

"mole";

// SI unit of amount of substance

// This is the "Faraday constant" relation (NIST,

// 2010). The factor Wb*S is the coulomb, which

// is defined below.

Natural Unit Representation in Modelica

804 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

constant Q.Potential K=8.3144621*(Wb*rad)^2*S/(s*

mol*R) "kelvin";

// This is the "molar gas constant" relation

// (NIST, 2010). The factor (Wb*rad)^2*S/s is the

// joule, which is defined below.

Listing 2: Selected records from the Units.Bases package

record Basis "Base constants and units"

final constant Q.Angle rad=1 "radian";

// SI unit of rotation or planar angle

constant Q.Wavenumber R_inf=1

"Rydberg constant (R_∞)";

// The SI unit length (meter) is inversely

// proportional to this value, which should be

// increased for larger characteristic lengths.

constant Q.Velocity c=1 "speed of light in

vacuum (c)";

// The SI unit time (second) is inversely

// proportional to this value (and R_inf), which

// should be increased for larger characteristic

// times.

constant Q.MagneticFluxReciprocal k_J=1

"Josephson constant (k_J)";

// The SI unit of magnetic flux (weber) is

// inversely proportional to this value, which

// should be increased for larger magnetic flux

// numbers. Also, the SI unit of charge

// (coulomb) is inversely proportional to this

// value.

constant Q.Resistance R_K=1

"von Klitzing constant (R_K)";

// The SI unit of electrical conductance

// (siemen) is inversely proportional to this

// value, which should be increased for larger

// characteristic conductances. Also, the SI

// unit of charge (coulomb) is inversely

// proportional to this value.

constant Q.RadiantIntensity 'cd'=1 "candela";

// SI unit of luminous intensity

constant Q.Number k_F=1 "Faraday constant (k_F)"

;

// The unit of substance (mole) is inversely

// proportional to this value, which should be

// increased for larger particle numbers. If

// k_F is set to 1, then charge is considered

// to be an amount of substance.

constant Q.Number R=1 "gas constant";

// The unit of temperature (kelvin) is inversely

// proportional to this value, which should be

// increased for larger temperature numbers. If

// R is set to 1, then temperature is

// considered to be a potential.

end Basis;

record Am

"Base constants and units for SI with k_F and R

normalized instead of A and m"

extends Basis(

final R_inf=sqrt(8.3144621)*10973731.568539,

final c=299792458/sqrt(8.3144621),

final R_K=(96485.3365^2*25812.8074434)/8

.3144621,

final k_J=483597.870E9*sqrt(S*s)/m,

final candela=1,

final k_F=1,

final R=1);

// Note: The values of the un-normalized SI

// base units are:

// A ~= 0.0000103643

// m ~= 0.346803

end Am;

4 Discussion and Conclusion

The implementation has been utilized to help model
and simulate a proton exchange membrane fuel cell
(PEMFC) in Dymola 7.4 [6]. It has been convenient
in specifying the values of parameters and constants
in this domain, where the product and research liter-
ature quotes values according to many different con-
ventions. There are also cases where simulations have
failed until the base constants were adjusted to prop-
erly scale critical values. In these cases, adjusting the
nominal attributes of the variables did not seem to be
sufficient, although it is difficult to prove.

The implementation raises the following concerns,
which must be addressed in order to fully and consis-
tently employ the method.

1. The unit attribute of a Real type should be re-
named as dimension to indicate that it represents
the physical dimension of the quantity rather than
a particular unit.

2. In the new context, the Real type may be a mis-
nomer. It may be best renamed as Quantity, but
this may have implications on the name for the
Complex record described in the Modelica lan-
guage specification [12].

3. The quantity attribute of the Real type (possi-
bly renamed as Quantity) may be superfluous.
However, its removal may imply that the same
attribute of the Boolean, Integer, and String

types should be removed as well.

4. It would be helpful to establish a standard method
to store and access the values of the base units
and constants along with the results of a simu-
lation. Ideally, the conversions created by the
defineUnitConversion command (in Dymola)
would be dynamically linked to the values of

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 805
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

the base units or constants, regardless of whether
they are within an active model or from previous
results.

5. The global variable time should be expressed
as a quantity in the same manner as other
variables—as the product of a number and a unit.
Currently, time is time in unit seconds and the
second has a value of 1. The time variable should
be adjusted such that time/U.s is time in unit
seconds and the second is not constrained to the
value of 1. If the der operator is based on this
unit-neutral time quantity, then it would be un-
necesary to divide its output by the unit second
(as in Sec. 3).

All of these items would affect both the Modelica
language and the Modelica Standard Library. There-
fore, it would be a rather significant undertaking to im-
plement the method as a standard. However, not all of
the items are necessary and the method can already be
implemented to a limited extent (with work-arounds)
in Modelica 3.2 and Dymola 7.4.

If a generalized method of units were to be intro-
duced to Modelica, concepts from SysML may be per-
tinent and useful. Subsections C.4 and C.5 of ver-
sion 1.2 of the SysML specification describe model
libraries for “Quantity Kinds and Units” and “Quan-
tities, Units, Dimensions, and Values” [1].

The proposed approach is not intended to supersede
the previous work in unit checking in Modelica by
Broman et al. ([4, 3]). Instead, it uses the methods
of unit checking for dimension checking.

Acknowledgments

The authors wish to acknowledge support from the
Presidential Fellowship of the Georgia Institute of
Technology and the Robert G. Shackelford Fellowship
of the Georgia Tech Research Institute.

References

[1] OMG Systems Modeling Language (OMG
SysML®), Jun. 2010. Ver. 1.2.

[2] E. Allen, D. Chase, V. Luchangco, J.-W.
Maessen, and G. L. S. Jr. Object-oriented units
of measurement. In OOPSLA04, Vancouver,
BC, Canada, Oct. 2004. ACM 1-58113-712-
5/03/0010.

[3] P. Aronsson and D. Broman. Extendable phys-
ical unit checking with understandable error re-
porting. In Proc. 7th Int. Modelica Conf., Como,
Italy, Sep. 2009. Modelica Association.

[4] D. Broman, P. Aronsson, and P. Fritzson. De-
sign considerations for dimensional inference
and unit consistency checking in Modelica. In
Proc. 6th Int. Modelica Conf., Bielefeld, Ger-
many, Mar. 2008. Modelica Association.

[5] Bureau International des Poids et Mesures. The
International System of Units (SI). http:

//www.bipm.org/en/si/si_brochure/, Mar.
2006.

[6] K. L. Davies, C. J. Paredis, and C. L. Haynes.
Library for first-principle models of proton ex-
change membrane fuel cells in Modelica. In
Proc. 9th Int. Modelica Conf., Munich, Germany,
Sep. 2012 (accepted). Modelica Assoc.

[7] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory, Mar. 2010. Ver. 7.4.

[8] P. Fritzson. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. IEEE
Press, Piscataway, NJ, 2004.

[9] W. Greiner, L. Neise, and H. Stöcker. Thermody-
namics and statistical mechanics. Classical the-
oretical physics. Springer-Verlag, 1995.

[10] B. Hess, C. Kutzner, D. van der Spoel, and
E. Lindahl. Gromacs 4: Algorithms for highly
efficient, load-balanced, and scalable molecular
simulation. J. Chem. Theory Comput., 4(3):435–
447, 2008.

[11] S. E. Mattsson and H. Elmqvist. Unit check-
ing and quantity conservation. In Proc. 6th Int.
Modelica Conf., University of Applied Sciences,
Bielefeld, Germany, Mar. 2008. Modelica Assoc.

[12] Modelica Assoc. Modelica: A unified
object-oriented language for physical sys-
tems modeling: Language specification.
https://www.modelica.org/documents/

ModelicaSpec32.pdf, Mar. 2010. Ver. 3.2.

[13] National Institute of Science and Technol-
ogy. Fundamental physical constants—complete
listing. http://physics.nist.gov/cuu/

Constants/Table/allascii.txt, 2010. Ac-
cessed Jun. 2012.

Natural Unit Representation in Modelica

806 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/
https://www.modelica.org/documents/ModelicaSpec32.pdf
https://www.modelica.org/documents/ModelicaSpec32.pdf
http://physics.nist.gov/cuu/Constants/Table/allascii.txt
http://physics.nist.gov/cuu/Constants/Table/allascii.txt

[14] D. C. Rapaport. The Art of Molecular Dynam-
ics Simulation. Cambridge University Press, 2nd
edition, Apr. 2004.

[15] Wikipedia. Natural units. http://en.

wikipedia.org/wiki/Natural_units. Ac-
cessed Mar. 2012.

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 807
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

http://en.wikipedia.org/wiki/Natural_units
http://en.wikipedia.org/wiki/Natural_units

Natural Unit Representation in Modelica

808 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

