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Abstract

A software framework for prototyping of Nonlinear
Model Predictive Control (NMPC) loops is presented
that is based on the standardized model exchange for-
mat FMI (Functional Mock-up Interface). Arising op-
timal control problems are solved by an efficient im-
plementation of the direct multiple shooting method,
which is especially suitable for nonlinear and stiff
system models. Using co-simulation, an optimizer,
plant, and estimator can be coupled to a closed NMPC
loop. Several stages of a typical control design process
are supported, ranging from virtual simulation experi-
ments to real plants with prototype NMPC controllers.
Energy efficient control of vapor compression cycles
is presented as example application of the proposed
methods.

Keywords: Functional Mock-up Interface; Nonlin-
ear Model Predictive Control; Vapor Compression Cy-
cles

1 Introduction

Nonlinear Model Predictive Control (NMPC) pro-
vides promising possibilities to improve control accu-
racy, stability, as well as energy and economical effi-
ciency of technical systems. The key idea is to utilize
rigorous mathematical models of the controlled plant
for online computations of appropriate control actions,
based on the repeated solution of a dynamic optimiza-
tion problem. Model-plant mismatch and disturbances
are incorporated by updating the mathematical model
according to estimates obtained from most recent mea-
surement data. From the point of view of the numer-
ical algorithms employed, these methods are well de-
veloped and ready to use. Their application to com-
plex systems however by now is the subject of a few

selected research projects only. The most prevalent
reason for this may well be the considerably large ef-
fort required to develop fast implementations of large-
scale accurate nonlinear models. The development
of object-oriented and equation-based modeling lan-
guages such as Modelica aims at helping to consider-
ably reduce this effort: systems can be conveniently
modeled by composition from smaller, reusable sub-
components. Moreover, there no longer is the need
to manually transform equations into a signal-oriented
form.

In the last few years, Modelica has matured to a
modeling language that is widely used for systems
simulation in both academics and industry. More re-
cently, research initiatives have come up that helped
to extend the scope of Modelica beyond pure systems
simulation. For example, [7] gives an overview over
current research activities in the area, and shows possi-
ble further directions especially from a control design
perspective.

Probably the first work reported in literature about
dynamic optimization with Modelica models can be
found in [12]. Therein the MATLAB S-Function for-
mat is used to interface Modelica models with an op-
timization solver. Dynamic optimization with mod-
els generated by the C-code export functionality of
the Modelica tool Dymola is described in [16] and
[25]. Both approaches suffer from the fact that the
used model exchange formats are proprietary. In [26]
the development of optimization based controllers in
Modelica is addressed. But the authors remain unclear
about the technical details how a Modelica model can
be reused as internal model of the control algorithms.

A more integrated approach is described in [1].
Based on Optimica, a language extension of Mod-
elica that serves to formulate optimization problems,
an open source Modelica simulation and optimization
tool has been developed that goes by the name JMod-
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elica.org, see [2]. Therein, dynamic system models
are formulated in the Modelica language and are sym-
bolically transformed into a representation suitable for
evaluation by numerical solvers. As is the case for
most Modelica tools, not all parts of the Modelica
language and the Modelica Standard Library are sup-
ported yet. Optimal control problems can be solved
in JModelica.org by means of a direct collocation
method.

As part of the ITEA-2 research project Modelisar,
the standardized model exchange format FMI (Func-
tional Mock-up Interface) [22, 3], has been developed.
During the last two years, FMI gained a lot of attention
and is now supported by over 20 simulation tools. A
detailed list can be found on http://fmi-standard.
org. The main purpose of FMI is to exchange models
between different simulation tools. FMI is used to de-
sign nonlinear Kalman Filters for state and parameter
estimation in [6]. To the best of our knowledge, there
are no reports of FMI having been applied to optimiza-
tion of dynamic systems, though.

1.1 Contribution

This article addresses the above described situation
by presenting a software framework for fast and re-
liable prototyping of NMPC loops using the FMI stan-
dard [22]. The key idea is to use existing special-
ized software for each task and exchanging models be-
tween these tools, relying on FMI for the purpose. Us-
ing established modeling and simulation tools such as
Dymola, one can conveniently set up large-scale and
complex system models. Exported as FMI models,
called FMUs (Functional Mock-up Units), we import
these into the direct optimal control code MUSCOD-II

[4, 9, 21]. MUSCOD-II is a software package for effi-
cient numerical solution of optimal control problems.
The implemented direct multiple shooting method is
favorable especially for large-scale, highly non-linear,
and stiff systems.

Using the co-simulation platform TISC [20], we
also present a software solution for coupling optimiza-
tion algorithms with simulation tools to conveniently
test designed NMPC loops. Using existing interfaces
to measurement and automation software NMPC con-
trollers can also be connected to real plants.

With NMPC of a vapor compression cycle, we
present a challenging but promising application and
demonstrate the capability of our method.

1.2 Structure of the Paper

The paper starts with a description of the theoretical
background of our methods. In Section 2 the under-
lying model class is defined. Based on this dynamic
system model, a class of continuous Optimal Control
Problems (OCPs) is formulated. The direct multiple
shooting method is presented in Section 3 as an ef-
ficient numerical approach for the discretization and
solution of OCPs. The control loop is closed in Sec-
tion 4 by taking into account state estimates or mea-
surements and repeatedly solving the OCP. In order to
derive an efficient control algorithm, special attention
is paid to reinitialization of subsequent optimization
iterations and the separation of each iteration into dif-
ferent phases. Technical details of our methods are
presented in Sections 5 and 6. We discuss optimiza-
tion results for an example application in Section 7,
using the presented toolchain and algorithms.

2 Problem Class

Starting point is an index-1 system of semi-explicit
differential algebraic equations (DAE) describing the
dynamic behavior of a controlled plant:

dx
dt
(t) = f

(
x(t),z(t),u(t), p

)
, t ∈T , (1a)

0 = g
(
x(t),z(t),u(t), p

)
(1b)

with independent variable time t on the horizon T :=
[0, tf], differential state variables x(·) ∈ Rnx , algebraic
state variables z(·) ∈ Rnz , control functions u(·) ∈ Rnu

and time-invariant model parameters p ∈ Rnp . Later
on, we will show how to use the FMI [22] to conve-
niently exchange models of type (1) between different
modeling software tools.

We may then formulate an OCP based on plant
model (1) to find locally optimal control trajectories on
the time horizon T for a given initial process state x0.
To this end, we need to express the performance mea-
sure as an OCP objective function, i.e., a combination
of a Lagrange-type term L,

∫ tf

0
L(x(t),z(t),u(t), p)dt, (2)

and a Mayer-type term E that is defined at the end of
time horizon only,

E(x(tf),z(tf), p). (3)
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With the resulting objective function

Φ(x(·),u(·),z(·), p) :=
∫ tf

0
L(x(t),z(t),u(t), p)dt (4)

+E(x(tf),z(tf), p),

an OCP can be formulated as follows:

min
x(·),z(·),

u(·),p

Φ(x(·),z(·),u(·), p) (5a)

s.t.
dx
dt
(t) = f (x(t),z(t),u(t), p), t ∈T , (5b)

0 = g(x(t),z(t),u(t), p), t ∈T , (5c)

0≤ c(x(t),z(t),u(t), p), t ∈T , (5d)

0 5 ri(x(ti),z(ti), p), {ti}i ⊂T , (5e)

0 = x(0)− x0. (5f)

We strive to identify trajectories for the controls u(·)
and the differential and algebraic states (x(·),z(·))
that minimize the cost function Φ, and are a so-
lution to the initial value problem defined by (5b)
and (5f). Additionally, mixed state-control inequal-
ity constraints (5d) and point constraints on a grid
{ti}i ⊂T (5e) must be satisfied.

3 Direct Multiple Shooting

The OCP presented in Section 2 is an infinite-
dimensional optimization problem. The purpose of the
Direct Multiple Shooting method [4, 21] is to trans-
form this problem into a finite dimensional nonlinear
program (NLP) by discretization of the control func-
tions and path constraints and by parameterization of
the state trajectories. To this end, we introduce a shoot-
ing grid {τi}0≤i≤N ,

0 = τ0 < τ1 < .. . < τN = tf. (6)

on the horizon T . Control trajectories are discretized
on the shooting grid, e.g. as piecewise constant func-
tions

u(t) := ui, t ∈ [τi,τi+1)⊂T , 0≤ i≤ N−1. (7)

The control space is hence reduced to functions de-
pending on finitely many parameters ui only.

Multiple shooting state variables si are introduced
on the time grid to parameterize the differential state
trajectories. The node values serve as initial values for
an IVP solver computing the state trajectories indepen-
dently on the shooting intervals 0≤ i < N,

dxi

dt
(t) = f (xi(t),zi(t),ui, p), t ∈ [τi,τi+1] (8a)

0 = g
(
xi(t),zi(t),ui, p

)
, (8b)

xi(τi) = si. (8c)

Obviously we obtain from the above IVPs N trajecto-
ries, which in general will not combine to a single con-
tinuous trajectory. Continuity across shooting inter-
vals needs to be ensured by additional matching con-
ditions entering the NLP as equality constraints,

si+1 = xi(τi+1; τi,si,zi,ui, p), 0≤ i≤ N−1. (9)

Here we denote by xi(τi+1; ti,si,zi,ui, p) the solution of
the IVP on shooting interval i, evaluated in τi+1, and
depending on the initial time ti, initial states (si,zi),
and on control and model parameters ui and p. Path
constraints c(·) are discretized on the shooting grid for
simplicity of exposition. Likewise, the point constraint
grid is assumed to coincide with the shooting grid.

From this discretization and parameterization, we
obtain a highly structured NLP of the form

min
ξ

N

∑
i=0

li
(
τi,si,zi,ui, p

)
(10a)

s.t. si+1 = xi(τi+1; τi,si,zi,ui, p) 0≤ i < N, (10b)

0 = g
(
τi,si,zi,ui, p

)
, 0≤ i≤ N, (10c)

0≤ c
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10d)

0 5 ri
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10e)

0 = s0− x0, (10f)

where all unknowns of the problem are grouped in a
single vector ξ :=

(
s0,z0, . . . ,sN ,zn,u0, . . . ,uN−1

)
. For

the ease of notation, we write uN := uN−1 in (10).
We solve this large-scale but structured NLP by

a tailored sequential quadratic programming (SQP)
method. This includes an extensive exploitation of the
arising structures, in particular using block-wise high-
rank updates of the Hessian approximation, a partial
null-space reduction to eliminate the algebraic states
[21], and condensing techniques for a reduction of the
size of this QP to the dimension of the initial values s0
and controls (u0, . . . ,uN−1) only [4, 21].

Note that the evaluation of the matching condition
constraint (10b) requires the solution of an initial value
problem with initial values (si,zi) and controls ui on
the time horizon [τi,τi+1]. For more details on the nu-
merical algorithms and techniques employed we re-
fer the reader to e.g. the textbook [24] for nonlinear
programming in general, and to [4, 21] for details on
nonlinear programming techniques for Direct Multi-
ple Shooting. An efficient implementation is available
with the software package MUSCOD-II [9, 21] that has
been used for all computations. MUSCOD-II for off-
line optimal control is publicly available [19] on the
NEOS Server for Optimization [15].

Session 6D: FMI Standard II 

DOI Proceedings of the 9th International Modelica Conference    783 
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany   



4 Nonlinear Model Predictive Con-
trol Scheme

We now address the issue of solving OCP (10) in an
on-line NMPC setting. Key to an efficient numerical
algorithm for NMPC is to reuse in every iteration in-
formation available from the last problem’s solution to
initialize the new problem. This is due to the fact that
subsequent problems differ only in the real-world pro-
cess state x0 (5f). Moreover, the faster the control feed-
back can be computed and applied to the real-world
process, the more similar the subsequent problems will
be. If model predictions are sufficiently close to real
process behavior, it is reasonable to expect that the in-
formation contained in the previous problem’s solution
already is a very good initial guess close to the desired
solution of the new subproblem.

4.1 Initial Value Embedding

In [8, 9] and subsequent works it has been proposed
to initialize the current problem with the full solution
of the previous optimization run, in particular control
variables ui and state variables (si,zi). We refer to [10]
for a detailed survey on the topic of initial value em-
bedding. It is a prominent feature of the Direct Multi-
ple Shooting approach that very good state initializers
are available not only for x(0) but also for the shooting
grid nodes x(τi), 1≤ i≤ N.

In using the proposed initialization, the value of s0
will in general not be the value of the current state
x0. By explicitly including the linear initial value con-
straint (10f) we can however guarantee that s0 attains
the value of x0 already after the first full Newton–type
step computed by the SQP method.

4.2 A Real–Time Iteration in Three Phases

This idea motivates the idea of real–time iterations
that perform only one SQP iteration per NMPC sam-
ple [9]. In this iteration, we can evaluate all derivatives
and all function values without requiring knowledge of
the current state x0, the only exception being the lin-
ear initial value constraint. Consequently, we can pre-
solve a major part of the direct multiple shooting SQP
step as follows:

Preparation All functions and derivatives that do not
require knowledge of x0 are evaluated. This
includes ODE solution, sensitivity computation,
sparsity analysis, structure exploitation, and ma-
trix factorizations. Note that the preparation

phase of the new problem always takes place one
sampling period ahead.

Feedback As soon as x0 is available, the SQP step
is readily computed from the prepared data, but
only as far as required to give a feedback con-
trol to the process. Hence, the feedback delay
reduces to the computation time of the SQP step
after preparation that essentially involves the so-
lution of only a single QP.

Transition The SQP step computation is completed
after the feedback control has been given to the
process.

5 Software Framework

In this section we present our software framework
for a convenient setup of simulated and real-world
NMPC loops. The basic idea is to use different spe-
cialized software for each task and to couple it to a
co-simulation master. Using FMI ensures integrity
of the underlying plant model that is used in several
places, and avoids error-prone and time-consuming
model transformations.

5.1 General Structure

A closed NMPC loop consists of three major parts as
sketched in Figure 1:

Plant The controlled system. This could be a real-
world plant or, in an earlier design stage, a virtual
plant based on a simulation model.

Estimator The current value of all state values and
parameters of the system model is estimated from
available measurement data y(t). The estimator
could be realized as a nonlinear Kalman filter or
a moving horizon estimator (MHE). If a virtual
plant is used wherein all state variables and pa-
rameters are accessible, it is also possible to use
an ideal estimator with (x(t), p) = y(t).

Optimizer The heart of an NMPC loop is an opti-
mization algorithm that determines the best pos-
sible control action for the current system state.
This is realized as described in Sections 3 and 4.
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Figure 1: Signal flow diagram of closed NMPC loop.

5.2 Data Exchange

We use the co-simulation platform TISC [20] to set-up
a powerful NMPC prototyping environment, keeping
the basic structure of Figure 1 in mind. TISC acts as
master and manages data exchange between different
clients. There already exist interfaces between TISC
and a variety of simulation, visualization and measure-
ment tools, e.g. Dymola, LabView, and Simulink. The
user has to define types and names of variables to be
sent and received for each client. Data routing between
clients is automatically managed by matching variable
types and names. For our NMPC environment we use
a fixed naming and typing convention. Variable names
and the direction of information flow are defined ac-
cording to Figure 1. The TISC type of time is Dou-
ble, whereas all other variables are of TISC type Dou-
bleArray.

Using this definition it is readily possible to ex-
change components of an NMPC loop. For example,
one could replace a virtual plant that is simulated in
Dymola with a real plant interfaced through LabView
with just a few mouse clicks.

6 FMI for Optimization

In this section we show some implementation de-
tails to shed light on how an FMU can be used
in MUSCOD-II to formulate and solve OCPs of
type (10). We also describe new requirements and de-
mands the FMI standard faces when we desire to use in
a consistent derivative-based optimization setting such
as direct optimal control, and give recommendations
on future enhancements of FMI.

6.1 Interface between MUSCOD and FMI

In order to set up and solve a OPC in MUSCOD-II the
user has to provide a C++ file that defines the model
equations, including differential equations, objectives,
and constraints. This source code is compiled into

a shared library and dynamically loaded by the main
program MUSCOD-II during runtime.

Instead of modeling in C++, we link a compiled
FMU to a generic MUSCOD-II model that calls the ap-
propriate FMI functions. This paradigm has also been
followed by [19] to interface MUSCOD-II with AMPL
[11]. As defined in FMI, some function calls have to be
carried out once during startup in order to instantiate
and initialize an FMU. This is organized by defining
a class, writing the required function calls in its con-
structor, and instantiating it as a global object. Now,
the constructor is called when the resulting dynamic
library is loaded into MUSCOD-II. The corresponding
code is shown in Listing 1. The pointer to the instanti-
ated FMU is defined globally, because we need to call
FMU functions in several places.
#define NXD 19

#define NU 2

#define NP 0

fmiComponent fmu;

const fmiValueReference uRef[NU] =

{352321536 , 352321537};

class InstantiateFMU {

public:

InstantiateFMU ();

~InstantiateFMU ();

};

InstantiateFMU :: InstantiateFMU ()

{

// Instantiate fmu

fmu = fmiInstantiateModel (instanceName ,

GUID , callbacks , fmiFalse );

// Set Time

status = fmiSetTime(fmu , 0.0);

// Set Controls

const fmiReal uIni[NU] = {2.5, 41.6667};

status = fmiSetReal (fmu , uRef , NU, uIni);

// Set Parameters

const fmiReal pInit[NP] = {};

fmiSetReal(fmu , pRef , NP, p);

// Initialize

fmiEventInfo eventInfo;

status = fmiInitialize(fmu , fmiFalse , 0.0,

&eventInfo );

}

InstantiateFMU instantiateFMU;

Listing 1: Instantiation and initialization of a FMU in
a MUSCOD model source file.

First of all we have to provide the differential right-
hand side function of the ODE, as shown in Listing 2.
This function is called by a MUSCOD-II integrator and
is expected to return the right-hand as a function of
time, states, controls, and parameters. The objective
function is formulated in a similar way. As an exam-
ple, the source code of a Lagrange term is shown in
Listing 3.
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void ffcn (

double *t, double *xd, double *xa,

double *u, double *p, double *rhs ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Controls

fmiSetReal (fmu , uRef , NU , u);

// Set Parameters

fmiSetReal (fmu , pRef , NP , p);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Derivatives

fmiGetDerivatives (fmu , rhs , NXD);

}

Listing 2: Right-hand side function.

void lfcn (

double *t, double *xd, double *xa,

double *u, double *p, double *lval ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Inputs

fmiSetReal (fmu , uRef , NU , u);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Outputs

const fmiValueReference yRef [2] =

{905970080 , 905971331};

double y[2];

fmiGetReal (fmu , yRef , 2, y);

*lval = (y[1] -283.15) * (y[1] -283.15)

+ 0.01 * y[0] / 1000.0;

}

Listing 3: Lagrange term of objective.

A large part of this source code can be generated
automatically from the model description xml file of
an FMU, but some lines, e.g. objective formulation,
currently still need to be coded by hand.

6.2 Directions for Future FMI Developments

In this section we give an outlook on future develop-
ments in using FMI for direct dynamic optimization.
Ideally, we are interested in realizing FMI access to
the full class of DAE-constrained switched systems,

dx
dt
(t) = fσ (t,x(t),z(t),u(t), p), t ∈T , (11a)

0 = gσ (t,x(t),z(t),u(t), p), (11b)

σi(t) =
{

+1 s(t,x(t),z(t),u(t), p)> 0,
−1 s(t,x(t),z(t),u(t), p)< 0.

, (11c)

i = 1, . . . ,nσ .

Additional transversality conditions must be satisfied
to guarantee that points s(t,x(t),z(t),u(t), p) = 0 are

isolated and a clear transition between the two alter-
nate right-hand sides occurs in the neighborhood of
such points, see e.g. [5].

The principle of internal numerical differentiation
(IND) requires a caller-control approach to be used
for consistent derivative-based optimization. In such
an approach, FMI is responsible for evaluation of the
functions f and g, if given a caller-supplied switch sig-
nature σ , factorization of dg

dz , iteration count for solv-
ing the DAE constraint 0 = g(·), etc. The caller is then
able to keep these potentially nondifferentiable parts
of the evaluation of system (11) fixed for the purpose
of computing consistent derivatives and sensitivities of
IVP solutions, e.g., as described in [5, 18, 23] for the
case of implicit switches.

6.3 FMI Requirements for Consistent
Derivatives

The current implementation of the FMI standard has
proven sufficient to enable our tools to work with FMI
when the problem class is limited to continuous ODEs.
DAEs are currently handled internally, and are ex-
posed as ODEs in a reduced space to the caller. This
involves iterative solution of the nonlinear DAE con-
straint that is carried out internally by the FMI. Im-
plicitly discontinuous ODEs, so-called switched or hy-
brid systems, are supported in an accessible way by
the FMI standard. State discontinuities however are
handled internally again. This effectively limits our
approach to FMI for optimization to ODEs with con-
tinuous solutions.

To extend the FMI standard to complement state-of-
the-art optimization software, the paradigm of external
control over adaptive components needs to be adhered
to. This currently is partially the case for switched sys-
tems, but needs to be extended to, e.g., state disconti-
nuities, direct linear algebra involving pivoting deci-
sions, and to the use of iterative solvers.

Whenever it is desirable to call such procedures in-
side an FMI model, all information about control about
adaptive components, including pivoting sequences,
iteration counts, matrix factors, outcome of condi-
tional evaluations, or choice between alternate func-
tions during implicit switching, should be conveyed
to the FMI by the caller. This would grant the caller
control over potential sources of non-differentiability
inside the FMI. We propose that the caller sould main-
tain an FMI state object that documents the state and
outcome of all non-differentiable actions, and would
pass this FMI state object to the FMI, to be used for
subsequent function evaluation. The caller would fur-
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ther modify this FMI state object whenever appropri-
ate, e.g. exchange functions during implicit switching,
but only after the arising non-differentiability or dis-
continuity has been taken care of on the optimizer’s
side. Indeed, the FMI 2.0 standard makes consider-
able progress into this direction.

7 Example Application: Vapor Com-
pression Cycle

To illustrate the applicability of the NMPC tools and
algorithms described in the previous sections, we
present simulation results for a challenging NMPC ap-
plication. We desire to control a vapor compression
cycle with two goals in mind: good disturbance rejec-
tion and maximum energy efficiency.

7.1 System Description

The system under consideration is sketched in Fig-
ure 2. Main components are two plate heat-
exchangers, a variable-speed scroll compressor, an
electronic expansion valve and a suction line accumu-
lator. Working fluids are internally refrigerant R134a
and on both secondary sides water-glycol mixtures.
This system also exists in reality and is designed as test
stand for automotive air-conditioning compressors.

Figure 2: Vapor compression cycle including inputs
and controlled outputs of the system.

7.2 System Model and Optimal Control
Problem

The system model is derived from first principles only.
The condenser is modeled as moving boundary model,
details can be found in [14]. Accumulator and evapo-
rator are modeled as lumped volumes.

Refrigerant fluid properties are incorporated using
bicubic spline interpolation. This approach leads to

improved computational speed and smoothness com-
pared to the commonly used iterative solution of fun-
damental equations. Further information can be found
in [13].

The resulting system model is an explicit ODE sys-
tem with 17 differential states. There are 2 controls:
a voltage signal vexv to the step motor controller ac-
tuating the expansion valve and the rotational speed
set-point of the compressor ncomp.

The main control goal is to keep the evaporator out-
let water temperature T out

evp at a fixed set point Tset. We
formulate the squared deviation as first Langrange-
type objective term:

∫ tf

0
(T out

evp (t)−Tset)
2 dt. (12)

We also want to maximize energy efficiency, in other
words, minimize the electrical power Pcomp needed by
the compressor, leading to the second Langrange-type
objective term:

∫ tf

0
Pcomp(t)dt. (13)

We also desire to realize a smooth control profile by
penalizing excessive control action, adding

∫ tf

0
(ncomp− ñ)2 dt, (14)
∫ tf

0
(vexv− ṽ)2 dt (15)

to our objective. Where ñ and ṽ are two additional
state variables the original ODE system is augmented
by. The corresponding additional equations are

dñ
dt

= ncomp− ñ, (16)

dṽ
dt

= vexv− ṽ. (17)

Weighting factors wi are introduced and all terms are
combined to the objective

Φ :=
∫ tf

0

[
(T out

evp (t)−Tset)
2 +w0Pcomp(t) (18)

+w1(ncomp− ñ)2 +w2(vexv− ṽ)2] dt

We finally obtain a OCP of type

min
x(·),u(·)

Φ(x(·),u(·)) (19a)

s.t.
dx
dt
(t) = f (x(t),u(t)) t ∈T , (19b)

0≤ c(x(t),u(t)) t ∈T , (19c)

0 = x(0)− x0, (19d)
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with 19 differential states x and 2 controls u. In ad-
dition to the plant model ODE (19b), fixed upper and
lower bounds for all states and controls (19c) as well
as initial values for all states (19d) are considered.

7.3 Simulation Results – NMPC

Using the methods and software tools described in pre-
vious sections we can set up a closed loop NMPC
simulation. The vapor compression system Modelica
model is developed, and exported as an FMU using
Dymola. As described in section 6.1, the exported
FMU is used in MUSCOD-II to formulate and solve the
arising optimal control problems of type (19).

Investigation of a range of choices for the NMPC
controller’s parameters, comprising time horizon,
number of multiple shooting intervals, and sampling
rate, leads to the final choice of 500 s time horizon di-
vided into 10 multiple shooting intervals and a 2 s sam-
pling interval of the closed loop controller. Control
trajectories are discretized on the same grid by piece-
wise constant functions. This setup shows good closed
loop performance in terms of stability and disturbance
rejection.

The choosen prediction horizon of 500 s appears to
be very large at first sight, but shorter prediction hori-
zons have been found to lead to stability issues. This
behavior is mathematically explained by large time
constants of the system. A physical explanation can
be given by a closer look at the suction line accumu-
lator. In this component, liquid refrigerant is stored in
order to compensate for changes of the optimal active
refrigerant charge at different working points; see [17]
for a detailed discussion. The second task of a suction
line accumulator is to separate vapor from liquid and
feed the compressor with pure vapor. In steady-state
conditions for the whole cycle, the accumulator energy
balance forces inlet and outlet refrigerant states to an
equilibrium. The accumulator can therefore be seen to
act as a passive control unit that drives two points of
the cycle (accumulator inlet and outlet) to the dew line.
This passive control action takes place comparatively
slowly, resulting in large time constants of the system
model.

A virtual NMPC experiment is set up by simulating
the controlled plant in Dymola and coupling it with
MUSCOD-II via TISC. The real-time iteration scheme
presented in Section 4.2 is applied with a fixed sam-
pling rate of 2 s, assuming zero feedback delay.

Additional assumptions are no model-plant mis-
match, availability of the full process state vector, and
uncontrolled input measurements without disturbance.
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(a) Control input 1: compressor speed.
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(b) Control input 2: expansion valve voltage signal.
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(c) Chilled water temperatures at evaporator inlet and outlet.
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(d) Compressor’s electrical power consumption.
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(e) Refrigerant subcooling at condenser outlet.

Figure 3: Simulation results: NMPC versus PI control
of a vapor compression cycle.

Although these assumptions can hardly be satisfied
when NMPC is applied to a real plant, this kind of
ideal experiment still helps to gain insight into the the-
oretical performance of an optimally designed NMPC
controller. Using our software framework, closed loop
performance of extended problems can be studied very
conveniently.
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7.4 Simulation Results – Comparison to PI
Control

For comparison, we applied a conventional control
concept with two continuous PI controllers to the
plant. Our primary goal – keeping chilled water out-
let temperature at a constant set-point of 8 ◦C – is
achieved by adjusting compressor speed. Contrary to
NMPC, we can’t take our second goal – maximizing
energy efficiency – directly into account. It known,
however, that for vapor compression cycles of our
type, a certain value of refrigerant subcooling at the
condenser outlet is optimal [17]. Hence, we may use
the second control input – expansion valve opening –
to keep subcooling close to a fixed set-point of 3 K.

In our example experiment we start with near
steady-state conditions. At t = 200 s the chilled wa-
ter inlet temperature rises from 10 to 10.5 ◦C. With
chilled water outlet at 8 ◦C, this results in a cooling
load increase of 25%. Figure 3 shows the correspond-
ing response of PI and NMPC closed loops.

In the first 200 seconds there is only little control
action. Both control goals, chilled water outlet tem-
perature (Figure 3(c)) and compressor’s power con-
sumption (Figure 3(d)), are almost identical for both
control concepts. This is because the chosen subcool-
ing setpoint for the PI controller is set to 3 K, which is
close to the efficiency optimal working point for these
boundary conditions. At t = 200 s, when the chilled
water inlet temperature rises, things change notice-
ably. First of all, there is an immediately deviation
of the chilled water outlet temperature from its set-
point. Both controllers react by increasing the com-
pressor speed (Figure 3(a)) and drive the temperature
back to their setpoints (Figure 3(c)). Looking at Fig-
ure 3(b), we see that both controllers react to the dis-
turbance by opening the expansion valve. The NMPC
controller however does so much more aggressively,
leading to the desired result that water outlet temper-
ature stays at its setpoint for the remaining simulation
time. The PI controlled temperature shows a second
deviation starting at t = 300 s. Because the maximum
compressor speed of 60 s−1 has already been reached,
the temperature deviation lasts until t = 800 s.

One could argue that the situation could be im-
proved by tuning the expansion valve PI controller to
speed up its reaction. Although we don’t claim to
have chosen the best possible PI parameters, simula-
tion studies show that the expansion valve PI controller
must be comparatively slow in order to ensure stabil-
ity of the closed loop. This may be due to the large
time constants mentioned above. A second reason may

be the inverse response behavior of the plant model
for expansion valve opening as input and subcooling
as output. Besides good disturbance rejection, a sec-
ond benefit of our NMPC controller becomes clear by
looking at the compressor power consumption in Fig-
ure 3(d). At t = 1000 s the system slowly approaches
a new steady state working point with about 4% in-
creased power consumption of the PI controlled com-
pared to the NMPC controlled cycle. Therefore, one
can see that a fixed subcooling setpoint is not optimal
for all boundary conditions. Figure 3(e) shows that for
the new working point, optimal subcooling tracked by
the NMPC controller lies somewhere around 4 K. If
we continued simulation, the PI controller would steer
the cycle back to non-optimal subcooling of 3 K.

8 Conclusion

Although tailored to forward simulation, the FMI for-
mat can be used for interfacing Modelica models with
state-of-the-art dynamic optimization software. But
with the current design of FMI this approach is lim-
ited to continuous ODE. To extend the scope of FMI
for optimization to hybrid DAE there must be major
changes. Instead of solving implicit algebraic equa-
tions with embedded solvers internally, the residuum
functions should be exposed. The proposed software
framework has proven its applicability for setting up
NMPC loops in an early design stage. The application
vapor compression cycle demonstrates the benefits of
NMPC. In the presented scenario, NMPC shows a sig-
nificantly better performance compared to a conven-
tional PI control concept in terms of energy efficiency
and disturbance rejection. Moreover, NMPC is able to
identify and track new optimal working points under
changed external conditions.
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