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Abstract

This paper presents an approach to use the Func-
tional Mockup Interface (FMI) for integration of
classical controller specifications and statechart-
based specifications of real-time critical message
exchange protocols. The Functional Mockup Unit
(FMU) is automatically generated from the speci-
fication. Using the generated FMU we are able to
exploit simulation facilities as provided by Model-
ica/Dymola.
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1 Introduction

In today’s globalized world market forces demand
products to provide for more and more unique fea-
tures. In so-called mechatronic or embedded sys-
tems these features are often realized (mainly) by
software. For example, many new features which
were recently introduced in the automotive indus-
try are largely software driven.

In addition, very advanced new features will de-
pend on extensive communication between cur-
rently still independently operating individual
components. For example, intelligent lighting sys-
tems in cars will combine information about the
environment obtained from their own sensors with
those collected by other cars to save energy but
also to avoid glaring other drivers. Similar ex-
amples exist for transportation systems in general
but also for household appliances or in the pro-
duction industry [25]. Here, possible significant
energy savings are one main motivation to intro-
duce so-called smart grids.

The resulting high amount of software enabling

communication between a large number of compo-
nents combined with the software controlling in-
dividual components makes those systems more
complex than today. This requires significant
changes in the way software is developed today.
This is especially true as the software controlling
individual components is usually dealing with con-
tinuous variable values and developed by control
engineers whereas software controlling communi-
cation is handling discrete input and output sig-
nals often using asynchronous communication and
is developed by software engineers. In addition,
electrical and mechanical engineers bring in exper-
tise about the underlying hardware system con-
straints which have to be considered when devel-
oping the software.

As these systems are usually deployed in safety-
critical environments, high quality of the software
is an absolute must [21]. However, in the past, an
overall validation of systems under construction
was not possible until implementations had been
finished, i.e., after all hardware and software parts
had been built and integrated into the final prod-
uct. The above mentioned different disciplines use
their own models and formalisms to describe the
corresponding parts of the system under develop-
ment, e.g. feedback controllers are described using
differential equations and communication proto-
cols are described using statecharts. This devel-
opment process hinders early (formal) verification
and simulation of system models to detect errors in
the design phase as early as possible and to avoid
costly error removal in later development stages.

In this paper we focus on supporting simu-
lation based on model-driven development espe-
cially considering cross-discipline development be-
tween control and software engineering. In con-
trast to other approaches like [22, 8, 26], we use
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a discrete system model which enables the de-
tailed specification of timing issues when speci-
fying communication protocols, because message
transfer specified by those protocols is real-time
critical. Proper functioning of the system does
not only depend on the correct order of messages
sent and received but also on their timely delivery.

This paper presents how we employed the Func-
tional Mockup Interface (FMI) and the Functional
Mockup Units (FMU) in order to integrate dis-
crete model-based real time protocol specification
with controller design and appropriated simula-
tion facilities using Modelica/Dymola.

The approach has been developed as part
of the ENTIME project (ENTIME is the Ger-
man acronym for ’Design Methods for Intelligent
Mechatronics’). The project aims at the devel-
opment of a seamless methodology reaching from
conceptual design to concrete implementation of
mechatronic systems. It is carried out in close co-
operation with nine industrial partners. To sup-
port simulation of the physical models and cor-
responding feedback loops together with specifi-
cations of real-time protocols, the main challenge
was to provide the needed tool support, because
the project collaborators use different modeling
and simulation tools in their industrial practice.

The paper is organized as follows. In the next
section we illustrate the use of MechatronicUML,
a domain specific modeling language enabling pro-
tocol specifications including sophisticated real-
time constraints. The example which we use in
the paper, is a miniature robot called BeBot which
is a small mechatronic systems with a focus on
ad-hoc communication. In Section 3, we give a
brief and informal introduction to the concepts of
the FMI standard, sketch our implementation of
MechatronicUML according to the FMI standard
for model exchange by means of the example, and
present our tool support. Section 4 discusses re-
lated work in more detail. The paper closes with
a conclusion and an outlook on future work.

2 Specification of Protocols

The specification language which we use is called
MechatronicUML [3]. It has been developed by
a large joint project between engineers and peo-
ple from computer science. The project is the
collaborative research center self-optimizing sys-
tems in mechanical engineering which is funded

by the German national science foundation since
2002 (http://www.sfb614.de/en/).

2.1 Running Example

The example is the scenario of a so-called obsta-
cle avoidance maneuver which is performed by a
BeBot. BeBot [11] is a sophisticated intelligent
miniature robot, developed by the Heinz-Nixdorf
Institute. Figure 1 shows a picture of a BeBot. In
our scenario, the BeBot uses three sensors which
detect obstacles in front, left and right of its cur-
rent position. Further, the BeBot has a gyroscope
which measures its current angle position with re-
spect to the outside world. Three components of
the BeBot are active when it performs obstacle
avoidance. These components are (1) an explo-
ration component which starts or stops the explo-
ration of the environment, (2) a navigation com-
ponent which steers the BeBot around an obstacle
based on the given sensor inputs and (3) an obsta-
cle detection component which receives the input
from the three sensors and transforms them into
corresponding messages which are received by the
navigation component.

Figure 1: BeBot Robot [11]

As a consequence, the decision if and how an
obstacle avoidance maneuver has to be performed
depends on (extensive) asynchronous communica-
tion between these three components. For exam-
ple, the navigator which knows the actual angle to
the outside world, informs the obstacle detection
component which sensor values are relevant. The
obstacle detection component must not send mes-
sages when a turn is performed, because sensor
values are not correct when the BeBot spins.

Figure 2 illustrates how a BeBot will find its
way out of the shown maze.
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Figure 2: BeBot Obstacle Avoidance Maneuver

2.2 Structure Model

In MechatronicUML the system model is struc-
tured hierarchically and consists of either atomic
components or of structured components. Atomic
components implement their behavior directly
and structured components are a composition of
other components. The component model of
MechatronicUML differs from other component-
based approaches, like [27], as MechatronicUML
employs active components, i.e. the behaviour
of each component is specified by a real-time
statechart (see below) and executed by a single
thread [3].

Each component has interaction points, called
ports for accessing their functionality. Discrete
ports, shown as rectangles, are used for sending
and receiving asynchronous messages. Each mes-
sage is typed over a message type. Further, dis-
crete message ports have the causality in , out

, or in/out . Discrete in-ports can only re-
ceive messages, discrete out-ports can only send
messages and in-out-ports can receive and send
messages. A continuous port, shown as a trian-
gle is either a continuous in-port , or a continu-
ous out-port . It sends or receives signal values
which are typed as Boolean, Int, or Real.

Figure 3 shows the internal structure of the Be-

Bot SW component. It consists of three atomic
components. The component Exploration is respon-
sible for starting and stopping the exploration sce-
nario. It is connected via its port sender to the
component Navigation. The Navigation component
is responsible for actuating the BeBot. It can set
the linear speed and the angular speed of the BeBot.
The Navigation component is connected to the Ob-

stacleDetection component via its discrete port mas-

ter. The ObstacleDetection component transfers the
continuous signal values of the sensors front, left,
and right to asynchronous messages. These mes-
sages inform the Navigation component if it has to
perform an obstacle avoidance maneuver.

  Obstacle

  Detection

BeBot_SW

      

Navigation

masterslave

linear_speed

angular_speedExploration 

receiver

Expsender

actual_angularfront

left

right

Figure 3: Component Type of the BeBot Software

2.3 Real-Time Properties

Real-Time properties are specified by clocks. In
MechatronicUML a clock is a first-class real-
valued entity and is used to synchronously mea-
sure the duration of time during execution. It can
be reset to zero, which is marked by the keyword
reset, with any state- or transition-action. At the
beginning of the simulation clocks start with a
zero-value. In contrast to delayed transitions of
State Graph2 [22], or the after, before-construct
of Stateflow [23], or the relative time event after
of UML, a clock is not automatically reset when
the system state changes. At any point in time, a
clock can be read. The value of the clock repre-
sents the continuous-time since the last reset [2].
This semantics simplifies the specification of more
complex real-time behavior and constraints. It is
possible to compare clock values with time con-
stants. We use clocks to specify transition guards,
transition deadlines and time invariants of states.

2.4 Discrete Behavior Model

MechatronicUML uses Real-Time Statecharts to
specify protocols of message exchange between dif-
ferent components, i.e. the order of message invo-
cation and its corresponding time constraints. Be-
sides elements from UML state machine formalism
Real-Time Statecharts use syntactic elements like
clocks and corresponding clock constraints as ex-
tended transition guards as defined by timed au-
tomata. In MechatronicUML each discrete port
has its own statechart. The behavior of a com-
ponent is given by the parallel composition of all
statecharts of all its ports. In addition, it is possi-
ble to add synchronization channels like in timed
automata to synchronize the behavior of the dif-
ferent port statecharts.
Time-invariants from timed automata con-

strain when and how long a statechart is allowed
to stay in a particular state. We define the max-
imum time for evaluating and executing a transi-
tions by a deadline. We use clocks as guards of
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transitions, deadlines of transitions, and time in-
variants of states. The operational semantics of
Real-Time Statecharts is formally defined by [12]
and is based on timed automata.

It enables the application of formal verification
techniques like real-time model checking [14] with
tools like UPPAAL [4]. For instance we specify
in our example in Figure 4 the safety property
that each turn maneuver may not last longer than
5 seconds. Therefore we use the time invariant
c0 < 5.

Figure 4 shows the Real-Time Statechart of the
Navigation component. It consists of the paral-
lel composition of the port statecharts receiverExp

and master. The statechart in region receiverExp

describes how the received messages from com-
ponent Exploration are processed. At the begin-
ning the statechart is in its initial state Stop and
the parallel statechart master is in the state Halt.
When the upper statechart gets the asynchronous
message start the outgoing transition fires, if the
synchronization channel go is available. The syn-
chronization channel go is available if the sender
transition, marked by the “!”, and the receiving
transition, marked by the “?” can fire. If both
transition can fire both transitions fire together in
an atomic way. This means either both fire or none
of them. Because there are no more conditions on
the transitions they fire and the statechart gets in
the states Start and Go.

When the statechart master enters the state Go

the output signal linear speed of the BeBot is set to
the value 0.1 and the angular speed is set to 0. In
the state Go the BeBot drives forward until the Ob-

stacleDetection sends the message obstacleFront. In
this case the BeBot turns right to a southward
direction and drives forward until the left sensor
signals that there is no more obstacle at the left
side. If there is no more obstacle, the BeBot turns
back in an eastward direction and drives forward
until the next obstacle occurs in front of it. If
there is an obstacle at the left side until the BeBot
reaches the corridor boarder, the BeBot performs
a U-turn and drives forward until the right sensor
signals that there is no more obstacle at the right
side. These steps are carried out in a loop until
the Exploration component sends the stop message.

Navigator

receiverExp

Stop

var: Integer linear_speed, angular_speed, ref_angular, 

Real actual_angular; cl: c0;

Start

start go! / 
1

stop() halt! / 
1

master

Halt

Go

go? /
1

halt? /

4

ObstacleFront

obstacleFront /

1

TurnMinus90

1
[ref_angular == 0] / 

TurnFinished

Minus90

c0 < 5

[actual_angular ==

 ref_angular] /

 turnFinished
1

1
 / detectLeft

NoObstacleRight  / 

stopDetectRight
2

Turn90
1

2

[ref_angular == -90] / 

stopDetectLeft {ref_angular := 90}

TurnFinished

90

c0 < 5

[actual_angular == 

ref_angular] /

 turnFinished

1
 / detectRight

Turn0

1

3

NoObstacleLeft  / 

stopDetectLeft

[actual_angular ==

 ref_angular] /

 turnFinished

entry / {linear_speed := 0.1, 

angular_speed := 0}

exit / {linear_speed := 0}

entry / 

{linear_speed := 0} 

{reset: c0}

2

1

c0 < 5

entry / 

{angular_speed := 1,

ref_angular := 0}

{reset: c0}

entry / 

{angular_speed := 1}

entry / 

{angular_speed := 1,

ref_angular := -90}

 

[ref_angular == 90] / 

stopDetectRight

3

Figure 4: Real-Time Statechart the Navigator

2.5 Asynchronous Communication

The shown Real-Time Statechart formally defines
the protocol definition of the message exchange
and the corresponding timing constraints. Mes-
sages are sent when a transition fires. Messages
which should be sent are shown behind the slash
(/) and messages which should be consumed are
shown before the slash. The connector may have
a delay or a message could be lost. For the sake
of simplicity of the figure above and due to lack of
space, we omit the specification of the connector
here. The receiver port of a message stores a re-
ceived message in a mailbox. This is implemented
as a queue and has a fixed size which is defined
by the modeler during design time. Each mes-
sage type has its own mailbox. Thus, the receiver
can test directly if a needed message is available
without searching the whole queue. Each message
type could have an arbitrary number of parame-
ters, which are packaged in the message when a
transition fires. The receiver transition can read
and process the parameters when it fires and con-
sumes the message. Messages remain in the mail-
box until a transition consumes and destroys it.

2.6 Further Features of
MechatronicUML

As explained, MechatronicUML [3] mainly focuses
on the discrete parts of systems. The language
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especially addresses the specification of complex
communication protocols with hard real-time re-
quirements [9].

The structure of a mechatronic system is defined
by a component-based development approach. It
is possible to distinguish between discrete software
components and continuous software components
like controllers. MechatronicUML has clear inter-
faces between discrete system parts and continu-
ous system parts.

The behavior of continuous components includ-
ing their communication protocols is specified by
an extension of our Real-Time Statecharts in the
sense of hybrid automata. However, in contrast to
hybrid automaton approaches [1, 19] we abstract
from detailed definitions of controllers.

This abstraction together with some constraints
on the parallel composition of port statecharts en-
ables formal verification of the behavioral spec-
ification using model checking. We employ the
model checker UPPAAL to verify safety proper-
ties like deadlock freeness, state reachability or
end-to-end response time. MechatronicUML mod-
els can be verified automatically. We also prove
by model checking that a mailbox will not over-
flow (see above). However, formal verification is
beyond the scope of this paper and we refer to
[15, 13] for further details.

3 Generating FMUs from
Software Specification

This section shows how to generate an FMU.

3.1 FMI/FMU Fundamentals

Using different tools when designing the models
leads to compatibility problems when you want to
simulate all models in combination. To address
this problem, the ITEA2 project MODELISAR
has defined the FMI as an open standard for model
exchange and co-simulation between multiple soft-
ware systems. The FMI is used to create an in-
stance of a model which can be loaded into any
simulator providing an import function for FMI
[7]. The FMI for Co-Simulation allows to couple
several simulation tools [6].

A software instance compatible to the FMI is
called an FMU. An FMU is basically a zip-archive
with a “*.fmu” file extension. The information re-
quired for the simulation environment is collected

in an XML-file called modelDescription.xml. In
addition, this file also includes a list of all variables
available for data exchange between the simulator
and the FMU. Furthermore, the standard defines
functions that are used for the interaction between
a model and the simulator. To provide an FMU,
the FMU provider has to implement these func-
tions using the C language.

3.2 Generating C-Code from
MechatronicUML

This section sketches the C-code generation tech-
niques for MechatronicUML models. The gener-
ated code may be used for a concrete microcon-
troller target platform or – as this paper shows –
for an FMU implementation.

3.2.1 Generating C-code from the
Structure Model

For each atomic component of the
MechatronicUML model, we generate a header
file and a corresponding implementation file. A
component is mapped to a structure containing
pointers to nested sub-components, variables,
and clocks required for the associated statechart.
In addition, corresponding code for the ports is
generated. The discrete port implementation is
used for inter-component communication. For
this purpose, a discrete port implements an array
of message queues. A queue stores messages
of one specific type. For parametrized message
types additional structures are generated in
order to encapsulate the parameter values. For
continuous in-ports we generated a variable with
the causality input and for continuous out-ports
we generate a variable with the causality out-
put. The continuous port type is mapped to a
corresponding FMI data type, e.g. Boolean to
fmiBoolean. Via the input and output variables
the FMU can be connected to other FMUs or
Modelica/ Simulink components.

Our code is intended to run also on small 8-bit
processors with only a few kilobytes of memory.
This is too little to support both a real-time op-
erating system and the control software. Hence,
the control software is executed standalone on the
processor and to support multiple communicating
components on one processor, the components are
processed in a cycle using a simple task loop imple-
mentation. Note that for future work we will intro-

Session 6D: FMI Standard II 

DOI Proceedings of the 9th International Modelica Conference    769 
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany   



duce a real-time operating system with more so-
phisticated task management and scheduling fea-
tures for larger systems with 16- and 32-bit pro-
cessors.

Listing 1 shows the execution sequence of our
example. The information about a component
is passed as an argument, allowing for multiple
components of the same type to exist in one en-
vironment. In every processing cycle, a compo-
nent statechart may exchange messages with other
components by sending and receiving them. After
every component has been processed, a synchro-
nization step is performed where raised events are
delivered to the target components.

. . .
// execute component behav ior
exe c nav i ga t i on ( comp navigation ) ;
e x e c exp l o r a t i on ( comp explorat ion ) ;
e x e c ob s t a c l e d e t e c t i o n (

comp obs tac l e de t e c t i on ) ;
// execute message exchange
sync ( connec to r s ende r r e c e i v e rExp ) ;
sync ( connec to r mas t e r s l ave ) ;
. . .

Listing 1: BeBot Execution Sequence

3.2.2 Generating C-Code from the
Discrete Behavior Model

There are several implementation techniques for
statecharts, but in most cases all the techniques
are variants and combinations of (1) the state ta-
ble, (2) the object-oriented state design pattern,
and (3) the simple switch-case statement imple-
mentations. (1) The state table implementation
maps directly to a state table representation in
the code. As it is not hierarchical, it needs ex-
tensions for nested states and parallel regions and
requires a large state table representation with a
complicated initialization. Hence, the code is less
readable. (2) The state design pattern simplifies
the implementation of statecharts. However, it
has also to be extended for hierarchical statechart
implementations. In addition, the implementation
is straightforward in C++, but it is rather com-
plex in C, because of the needed mapping for in-
heritance and polymorphism. Therefore, we de-
cided to generate nested switch-case statements
(3). The implementation technique of switch-case
statements is quite simple, it can be easily coded
in C, and it has a small memory footprint since
only one state variable is necessary to store the
current state of a state machine. Furthermore,

nested switch-case statements allow us to imple-
ment hierarchical statecharts in a quite intuitive
and readable way, which ensures traceability be-
tween the model and the generated code.

Listing 2 shows a code excerpt from the gen-
erated program for the BeBot example shown in
Figure 4. It gives an impression of the generated
C-code for a transition from state ObstacleFront to
state TurnMinus90.

void execute master ( comp navigation ∗ comp) {
. . .
switch ( reg master ) {

. . .
case STATE NAVIGATOROBSTACLEFRONT:
i f ( r e f a n gu l a r == 90) { . . .
} else i f ( r e f a n gu l a r == −90) { . . .
} else i f ( r e f a n gu l a r == 0) {

// s t a t e change
reg master = STATE NAVIGATOR TURNMINUS90;
// entry ac t i ons
angu lar speed = 1 ;
r e f a n gu l a r = −90;

}
. . .

Listing 2: Excerpt from navigation.c

For each region of a statechart, we declare an
Integer variable to keep the current state of this
region. Within each case-statement, a sequence of
mutually exclusive if-statements is used to deter-
mine whether one of the state’s outgoing transi-
tions can fire. In order to enable a transition, the
existence of events and Boolean expressions gen-
erated from conditional guards, clock guards, and
synchronization channels have to be evaluated. As
transitions have priorities in MechatronicUML to
prevent non-deterministic behavior, the generator
sorts the transitions according to their priorities
before generating the appropriate code. If a tran-
sition is enabled, it fires, i.e. the new state is set
and the appropriate exit and entry actions are ex-
ecuted. A state may also contain do-actions and
inner regions which are executed if no transition
is enabled. For this case, a final else-block is cre-
ated. Note, the presented program is executed
once in each cycle. In order to use the generated
C-code for an FMU implementation, we have to
implement the required interfaces from the FMI
standard.

3.3 FMI/FMU Wrap Up

We employ the FMU SDK from QTronic [16]. Fig-
ure 5 shows the relations and dependencies be-
tween the FMI standard, the QTronic FMU SDK,
and our statechart implementation.
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Figure 5: Implementation Dependencies

The basic implementation of the FMI is
provided by the FMU SDK. To implement
MechatronicUML, our code generator creates a
header file and an implementation file for each
component taking the FMU SDK into account.

The FMU SDK implements the FMI standard
by delegating some of the tasks to supplemen-
tary functions that have to be implemented by
the user. In our case, these implementations are
also generated automatically by our code genera-
tor. The most important function is eventUpdate,
as it is used to execute the statecharts. Since
the eventUpdate-function is called by the FMI-
function fmiEventUpdate whenever an event oc-
curs during a simulation, we are able to react on
changes in the simulation model. We use Time
Events from the FMI to control the execution of
a statechart at a regular interval and map each
clock to an fmiReal variable. Since the current
simulation time is passed to the FMU as a pa-
rameter, the current simulation time is assigned
to the clock variable to reset a clock. Evaluat-
ing is done by calculating the elapsed time since
the last reset. The difference between the current
simulation time and the affected clock variable is
used to evaluate clock constraints, deadlines and
invariants upon appropriate actions are taken.

In the FMI standard, direct access to the data
stored within the model is not possible, even if the
source code is provided. Instead, a reference num-
ber is associated with each variable in the descrip-
tion file. Therefore, the FMU SDK stores variables
of the model in four arrays of the types fmiReal,
fmiInteger, fmiBoolean, and fmiString and refer-
ences them by using indices. This is an efficient
implementation of the FMI standard, but it is not
useful for target-specific code that does not serve
as an FMU implementation. Further, it is not easy
to read and to understand the code. Therefore,
we generate placeholders for the variables of our
model. For the FMU implementation we generate
preprocessor macros, which map the placeholders
to FMU SDK compliant array access statements.

Figure 6: EmbeddedModeller

In case of other targets, e.g. microcontrollers, we
generate preprocessor macros mapping the place-
holder to more suitable structures and variables.

3.4 Tool Support

We provide our tool support in form of an Eclipse
modeling tool suite which is called Embedded-
Modeller. The EmbeddedModeller provides
several diagram editors and supports software
specifications based on MechatronicUML as ex-
plained in the previous sections. Figure 6 shows
the editors for Real-Time Statecharts and struc-
tured component diagrams.

For generating C-code and the corresponding
FMU description file, we used a template-based
code generator framework. To create the FMU
with all resources, the batch script provided with
the FMU SDK is executed. Firstly, the batch file
creates a temporary directory with the desired di-
rectory structure for the FMU under construction.
Secondly, it compiles the sources and copies all
needed files to the corresponding folders. Lastly,
the batch packages the processed directory and
saves it within the *.fmu file.

To simulate the designed BeBot software, we
generated the FMU for our software specification
BeBot SW and created the Modelica model of the
mechanical and control engineering parts of the
BeBot within Dymola. The FMU was imported
and connected to the hardware model of the Be-
Bot. Since the continuous ports of the Mechatron-
icUML serve as an interface to continuous com-
ponents in general, we are able to connect our
FMU, i.e. our discrete software component, to the
provided BeBot feedback controllers. We simu-
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lated the integrated model in Dymola successfully.
Note, our approach is not limited to Modelica /
Dymola as the FMI standard is tool-independent.
Therefore, it is possible to simulate software speci-
fications with any other simulation tool which sup-
ports the FMI model exchange standard.

4 Related Work

This section presents related work. We focus on
approaches which can be used to simulate hy-
brid systems and where the discrete behavior is
state-based. Further, we currently use the FMI
for model exchange and not for co-simulation.
Therefore, we do not discuss other approaches
for co-simulation or distributed simulation like
CODIS [5], TISC [20] or FMI co-simulation [6].

4.1 Statecharts in Modelica

Currently, state-based behavior can be modeled
in Modelica with the library State Graph2 or al-
gorithmic code is generated from SimulationX or
ModelicaML.

State Graph2 is a Modelica library [22] which
provides classes for states (Step), hierarchical
and parallel behavior (Parallel), and transitions
(Transition). With these elements it is possi-
ble to model complex behavior like Harel’s wrist
watch example. In contrast to MechatronicUML,
StateGraph2 has no concepts for clocks, clock con-
straints, time invariants, and deadlines to spec-
ify and constrain timing behavior. A modeler
could manually implement such behavior in Mod-
elica. Further, State Graph2 has no concept for
asynchronous message-based communication. We
are currently working on such a library extension.
However, as State Graph2 is modeled with equa-
tions and these equations are sorted before the
model is simulated, the modeler can hardly influ-
ence the resulting C-code generated by Dymola.
So, it is difficult to compare this code with real
target source code. The FMI C-code is the same
as the target source code except for the interface
definition .

SimulationX has its own state-based language
which follows the ideas of UML state machines
and supports a subset [8]. In contrast to Real-
Time Statecharts, SimulationX does not support
parallel behavior, timing behavior, and coordina-
tion of distributed components by asynchronous

communication. Timing behavior is supported
in a limited way, as transition firing could be
constrained to a time interval from the moment
when the source state of the transition is en-
tered. In MechatronicUML we use, like timed au-
tomata, clocks, clock constraints, time invariants,
and deadlines to specify and constrain the timing
behavior of our models. Messages are only avail-
able within a statechart in SimulationX. They do
not support an arbitrary number of parameters,
and messages are lost when a transition cannot re-
act on the event immediately. Therefore, it is diffi-
cult to specify coordination of distributed compo-
nents. SimulationX generates Modelica algorithm
code from its state machines.

ModelicaML is a UML Profile [26] which en-
ables to use UML Classes and Properties to spec-
ify Modelica models. State-based behavior is mod-
eled by UML state machines. The code gener-
ation mechanism supports nearly all UML state
machine constructs [24]. The Modelica code is
generated like SimulationX to the Modelica algo-
rithm section. As UML has no concept for clocks,
clock constraints, time invariants, and deadlines,
ModelicaML does not support them either. Asyn-
chronous messages between components can be
simulated via an external C-function [24]. As
ModelicaML has all freedoms of Modelica, it is not
possible to verify the resulting models efficiently.

4.2 MATLAB Simulink/Stateflow

MATLAB has an own state-based modeling lan-
guage called Stateflow, which can be combined
with its simulation platform Simulink. Stateflow
supports many features from UML state machines
and can be combined with the whole capabilities
of the MATLAB platform via its action language.
It is only possible to define formal semantics for
restricted Stateflow models [17]. Stateflow does
not provide first class modeling entities for speci-
fying timing behavior, except simple after and be-
fore statements. Stateflow does not provide a con-
cept of buffering messages. It is possible to model
such elements with a combination of Simulink and
Stateflow blocks, but this is complex, error prone,
and hard to maintain manually [18]. It is possible
to load FMU using the separate FMI toolbox of
Modelon [10].
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5 Conclusion and Outlook

This paper shows how it is possible to generate
FMUs from a formal software specification lan-
guage for cyber-physical system. As a result it
is possible to perform software-in-the-loop tests
by numerical simulation of hybrid systems. We
describe the following problem that arises when
providing a methodology and tool support reach-
ing from conceptual design to concrete implemen-
tation of cyber-physical systems: The approach
should support the overall system simulation for
different industrial partners in a heterogeneous de-
sign tool environment. The partners provide simu-
lation models for mechanical and control engineer-
ing parts of the system, but software simulation
models are missing. The transformation of soft-
ware specification to FMUs solves this problem.

As the main contribution, we describe how a
software specification in MechatronicUML can be
automatically translated to FMUs maintain the
original MechatronicUML semantics and, thus,
the verification results. In particular, we map
the component-based structure, the asynchronous
communication in form of Real-Time Statechart,
and real-time properties in MechatronicUML to
C-code, which is wrapped by the FMI. We
implemented the generation of FMUs from a
given MechatronicUML model using a model-
driven transformation approach. This combines
the modeling and formal verification strengths of
MechatronicUML with the advanced simulation
capabilities of simulation tools like Dymola or
Simulink. As a result of numerical errors we can-
not guarantee that in different FMI import tools
the different simulation runs have the same behav-
ior. Therefore, the formal verification is important
because it proofs every possible simulation run and
guarantees that all paths are conform to the spec-
ification. It is up to further research to proof that
our generation is correct and keeps the verified
properties.

The shown transformation approach should be
interesting for anyone who wants to test for-
mal software specification by simulation against
a model of the physical system. A transformation
against the FMIs could be performed for other for-
mal software specification languages like Petri nets
for flow analysis or stochastic software models for
testing performance or failure rates. Hereby, it
would be possible to combine the strength of for-
mal analysis and numeric simulation.

For future work, we plan to develop a concept
to allow for communicating via messages between
several FMUs. Further, we want to generate code
against different hardware platforms to analyze
the timing behavior. We want to integrate the be-
havior of an underlying middleware or real-time
operating system into the simulation. We may
use co-simulation for this purpose. The simula-
tion of complex cyber-physical systems requires
much computing time. We want to compare the
performance of native Modelica simulations with
integrated FMU simulations and try to enhance
the performance of hybrid simulations. Currently,
it is not easy to interpret the simulation results.
Here a bisimulation concept would help. To show
the result, a simulation run could be visualized in
the statechart or the message exchange could be
visualized by sequence diagrams.
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