
Parallel Multiple-Shooting and Collocation Optimization

with OpenModelica

Bernhard Bachmann
1
, Lennart Ochel

1
, Vitalij Ruge

1
,

Mahder Gebremedhin
2
, Peter Fritzson

2
,

Vaheed Nezhadali
3
, Lars Eriksson

3
, Martin Sivertsson

3

1
Dept. Mathematics and Engineering, University of Applied Sciences, D-33609 Bielefeld, Germany

2
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
3
Vehicular Systems, Dept. Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden

{bernhard.bachmann,lennart.ochel,vitalij.ruge}@fh-bielefeld.de,

{peter.fritzson,mahder.gebremedhin,vaheed.nezhadali,lars.eriksson,marsi}@liu.se

Abstract

Nonlinear model predictive control (NMPC) has be-

come increasingly important for today’s control engi-

neers during the last decade. In order to apply NMPC a

nonlinear optimal control problem (NOCP) must be

solved which in general needs high computational ef-

fort.

State-of-the-art solution algorithms are based on

multiple shooting or collocation algorithms, which are

required to solve the underlying dynamic model formu-

lation. This paper describes a general discretization

scheme applied to the dynamic model description

which can be further concretized to reproduce the mul-

tiple shooting or collocation approach. Furthermore,

this approach can be refined to represent a total colloca-

tion method in order to solve the underlying NOCP

much more efficiently. Further speedup of optimization

has been achieved by parallelizing the calculation of

model specific parts (e.g. constraints, Jacobians, etc.)

and is presented in the coming sections.

The corresponding discretized optimization problem

has been solved by the interior optimizer Ipopt. The

proposed parallelized algorithms have been tested on

different applications. As industrial relevant application

an optimal control of a Diesel-Electric power train has

been investigated. The modeling and problem descrip-

tion has been done in Optimica and Modelica. The

simulation has been performed using OpenModelica.

Speedup curves for parallel execution are presented.

Keywords: Modelica, Optimica, optimization, mul-

tiple shooting, collocation, parallel, simulation

1 Introduction

This paper presents efficient parallel implementations

and measurement results of solution methods for non-

linear optimal control problems (NOCP) relevant for

nonlinear model predictive control (NMPC) applica-

tions.

NMPC as well as NOCP have become increasingly

important for industrial applications during the last

decade [3], [4]. State-of-the-art solution algorithms [4]

are based on multiple shooting or collocation algo-

rithms, which are needed to solve the underlying dy-

namic model formulation. This paper concentrates on

parallelizing these time-consuming algorithms, which

finally lead to a very fast solution of the underlying

NOCP. Moreover, a general discretization scheme ap-

plied to the dynamic model description is introduced,

which can be further concretized to reproduce the

common multiple shooting or collocation approach [7]

and can also be refined to represent total collocation

methods [4] in order to solve the underlying NOCP

much more efficiently. The modeling and problem de-

scription is done in Modelica [2] extended with optimi-

zation goal functions and constraints specified as in

Optimica [15]. The simulation is performed using

OpenModelica [1]. Speedup curves for parallel execu-

tion are presented for application examples.

Section 2 describes the underlying mathematical

problem formulation including the objective function

and constraints to the state and control variables. The

general discretization scheme applied is discussed in

Section 3. This approach can be further refined to rep-

resent multiple shooting or collocation algorithms for

the solution process, which is described in Section 4.

DOI Proceedings of the 9th International Modelica Conference 659
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

mailto:bernhard.bachmann@fh-bielefeld.de
mailto:lennart.ochel@fh-bielefeld.de
mailto:vitalij.ruge@fh-bielefeld.de
mailto:peter.fritzson@liu.se
mailto:mahder.gebremedhin@liu.se
mailto:vaheed.nezhadali@liu.se
mailto:lars.eriksson@liu.se
mailto:marsi@liu.se

In section 5 the general discretization scheme is fur-

ther developed towards total collocation methods.

Industrial relevant Modelica applications are pre-

sented in Section 6. Parallel execution of the constraint

equations of the NOCP is performed in Section 7. The

results show reasonable speedups of the optimization

time when it comes to time consuming calculation of

the model equations. The necessary implementations

are partly realized in the OpenModelica Compiler,

which is described in Section 8. The paper concludes

with a summary of the achieved results.

2 The Nonlinear Optimal Control

Problem (NOCP)

The numerical solution of NOCP is performed by solv-

ing the following problem formulation [7][8]:

 ()

 (() ())

 (())

 ∫ (() ())

(2.1)

subject to

 () (2.2)

 ̇() (() ()) (2.3)

 (() ()) (2.4)

 (()) (2.5)

where () () are the state and

control variables, respectively. The receding time hori-

zon is given by the interval []. The constraints

(2.2), (2.3), (2.4) and (2.5) describe the initial condi-

tions, the nonlinear dynamic model description based

on differential algebraic equations (DAEs, Modelica),

the path constraints ((() ())) and the

terminal constraints.

Support for time-optimal control and corresponding

terminal constraints is work-in-progress and are not yet

provided by the current implementation.

2.1 Boundary Value Problems

The objective function (2.1), that needs to be mini-

mized, includes conditions at the boundary time point

 stated by the function (()) as well as condi-

tions taking into account the whole time horizon stated

by ∫ (() ())

 .

Figure 1. Different trajectories achieved by varying control
variables. Only one trajectory fulfills the terminal constraint (red

dot).

The function (()) describes conditions that

should be fulfilled at the final time point similar to the

terminal constraint (2.5). Since (()) is part of the

objective function (() ()) the applied optimiza-

tion methods may not find a solution that fulfills the

corresponding terminal constraints, but should be very

close to it. The trajectories are influenced by changing

the control variables. Different trajectories using differ-

ent control variables are visualized in Figure 1.

On the other hand, different trajectories could fulfill

the same terminal constraints. Taking into account the

whole time horizon by minimizing the second part

∫ (() ())

 of the objective function will

lead to the selection of the optimal trajectory. This be-

havior is visualized in Figure 2.

Figure 2. Different trajectories that fulfill the terminal constraint.

3 General Discretization Scheme

In order to apply a general discretization scheme the

NOCP formulation is rewritten to a general form which

later can be used to derive the different possible numer-

ical algorithms e.g. multiple shooting, multiple or total

collocation algorithm, etc. [6]. Equations (2.2) and

(2.3) can be rewritten as follows:

 () ∫ (() ())

 (3.1)

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

660 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

When discretizing the time horizon [] into a finite

number of intervals [] [] (e.g. equidis-

tant partitioning:

) integral in (3.1) can be reformulated to

∫ (() ())

 ∑∫ (() ())

(3.2)

Each integral

∫ (() ())

 (3.3)

on a subinterval can now be treated independently, if

additional constraints are added to the NOCP formula-

tion to force the calculation of an overall continuous

solution. Therefore, locally the problem reduces to a

boundary value problem [5] stated by

 () ∫ (() ())

 (3.4)

where () () for [] , .

It yields () and continuity is forced by addi-

tional constraints () added to the NOCP

formulation, which finally leads locally to a boundary

value problem. Each sub-problem (3.4) can be solved

independently and in parallel, if multiple shoot-

ing/collocation is applied. By varying the control varia-

ble () in each sub-interval the solution of (3.4) can

be influenced in order to fulfill the overall continuity

constraints. In the current approach it is assumed that

 () is constant for each subinterval []

4 Multiple Shooting or Collocation

Different numerical methods are available to solve

equation (3.4). The first approach presented within this

paper is the reformulation of (3.4) to an ordinary differ-

ential equation

 ̇ () (()) (4.1)

with the initial condition () .
In order to solve equation (4.1) an appropriate (e.g.

explicit/implicit) integration algorithm can be applied

that is already available in OpenModelica. A schematic

view of the algorithmic dependencies is presented in

Figure 3.

Alternatively, equation (3.4) or (4.1) can locally be

solved using collocation methods, which also can be

interpreted as numerical treatment of integration. De-

tailed descriptions of the multiple shooting algorithm

using local collocation can be found in [7]. The solu-

tion process for equation (3.4) in each subinterval can

be performed in parallel. The necessary calculation

time depends certainly on the chosen integration meth-

od. In case of an explicit integration algorithm, e.g.

Runge-Kutta based, more intermediate integration steps

might be necessary for certain accuracy than using an

implicit integration method, e.g. local collocation

methods. On the other hand, explicit integration meth-

ods just perform at each intermediate step an evaluation

of the model equations, whereas implicit methods in

general need to solve a system of non-linear equations,

which might also be time consuming. Nevertheless,

when the underlying system of ordinary differential

equations is stiff, implicit methods need to be applied.

Figure 3. Schematic view of the algorithmic dependencies.

Although, equation (3.4) can be solved in parallel a lot

of time is used for finding exact solutions to a locally

defined problem, which might not be relevant for the

over-all problem stated by the (NOCP) formulation

(2.1)-(2.5). Therefore, the solution process for the

NOCP still needs a lot of computation time. The next

section describes methods to overcome this deficiency

by adding the locally derived residual equations (based

on locally applied collocation methods) to the over-all

NOCP formulation.

5 Total Collocation

Applying collocation methods for solving equation

(3.4) locally leads in general to a system of non-linear

equations for each sub-interval. The solution process of

these equations might be time consuming and with re-

spect to the NOCP not efficient. If the corresponding

non-linear equations are added to the NOCP formula-

tion and corresponding optimization algorithms have

access to the intermediate points used by the local col-

location method a more efficient solution process can

be formulated [4]. This section presents two different

collocation methods.

NOCP

Discretizati
on Scheme

Multiple
shooting

Numerical
Treatment

of
Integration

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 661
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

Based on the common Lagrangian polynomial

 () for interpolation purposes, following abbrevia-

tions are introduced for and :

 () ∏

() ∑

 ∏

∫ ∫ ()

where are the supporting points within the

reference interval []. Further abbreviations are de-

fined by (),

and ().

Figure 4. Schematic view of the algorithmic dependencies.

The first variant is dealing with the approximation of

the states which leads to the following formulas:

 ∑

 ∑

(5.1)

In case of this approach reduces to the implicit

Euler formula with approximation order 1.

The second variant is dealing with the approximation

of the derivatives of the states and leads to the for-

mulas:

 ∑∫

 ∑

(5.2)

In case of this approach reduces to an implicit

Runge-Kutta formula (trapezoidal rule) with approxi-

mation order 2.

The discretized NOCP using total collocation and

corresponding Gaussian quadrature formula for the

integral part of the goal function is finally described by:

 ()

 (() ()) ()

 ∑∑ ()

(5.3)

subject to

 ()

 ()

 ()

 ()

 (5.4)

for , . For variant 1 the support-

ing points , and weights are given

based on Radau formulas.

 () are the additional resid-

ual equations from (5.1). For variant 1 the supporting

points , and weights are given

based on Lobatto formulas. ()

 are the additional residual equations from (5.2).

6 Modelica Applications

To investigate the performance of the proposed optimi-

zation algorithm, industrial relevant optimal control

problems are solved and corresponding results are pre-

sented in this section.

6.1 Batch Reactor

We begin by considering a simple model from the

chemical reactor described in [7] to maximize the yield

of () by manipulation the reaction temperature (),
with the following problem formulation:

 ()

 (() ()) () (6.1)

subject to

 ̇ () (()
 ()

) ()

 ̇ () () ()

(6.2)

(

 ()

 ()

 ()

 ()

 ()

 ())

 (6.3)

 () (

) (6.4)

where () (() ())

 and [].

NOCP

Discretization
Scheme

Total
Collocation

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

662 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

Figure 5. Trajectories of state and control variables

6.2 Optimal control of Diesel-Electric power-

train

The Diesel-electric model based on [10] is presented in

Appendix A. This concept is modeled according to a

nonlinear mean value engine model (MVEM) contain-

ing four states and three control inputs while the gener-

ator model is simplified by considering constant effi-

ciency and maximum power over the entire speed

range.

In a Diesel-electric powertrain the operating point

of the Diesel engine can be freely chosen which would

potentially decrease fuel consumption. Moreover, the

electric machine has better torque characteristics. These

are the main reasons making the Diesel-electric power-

train concept interesting for further studies.

To investigate the fuel optimal transients of the

powertrain from idling condition to a certain power

level while the accelerator pedal position is interpreted

as a power level request, the following optimal control

problem is solved:

states (

) , controls (

)

 ∫ ̇

subject to

 ̇

()

 ̇

()

 ̇

()

 ̇

()

() ()

()

() () ()

() ()

()

()

and boundary conditions are:

at (

)

at (

 ̇
 ̇
 ̇
 ̇

) , (

)

and .

The constraints are originated from components’ limi-

tations and the functions are described in the appen-

dix [10].

Figure 6. Trajectories of control variables

In this work, we try to find the fuel optimal control

and state trajectories in a certain time interval [].
For simplicity, only diesel operating condition is as-

sumed which means ().

Figure 7. Trajectories of state variables

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 663
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

The dynamic system is solved after it is discretized

into subintervals. Figure 6 and Figure 7 show the ob-

tained control and state trajectories. As it is expected,

the fuel optimal results happen when engine is acceler-

ated only near the end of the time interval ()
to meet the end constraints while minimizing the fuel

consumption.

In section 7 it is shown how the parallel execution

increases the performance of the optimization process.

7 Parallel Execution and Perfor-

mance Measurements

We have performed measurements for the different

algorithms (multiple shooting/collocation and total col-

location with variant 1 and 2) applied to the above de-

scribed applications. The C/C++ source code has been

compiled by gcc version 4.6.3 (GCC) with OpenMP

support. The measurements are done on an Intel Core

i7 CPU 870 with 8 cores @ 2.93 GH (4 real cores and 4

virtual cores).

The corresponding optimization problem is solved

by the interior point optimizer Ipopt [16]. Figure 8

shows the different functions and derivative infor-

mation that need to be provided to Ipopt for the solu-

tion process. In the current implementation the Hessian

matrix of the corresponding Lagrangian formulation is

calculated numerically by Ipopt. The other information

(see Figure 8) is provided numerically by external rou-

tines. When calculating the Jacobian and Hessian ma-

trices the treatment of the sparsity patterns, is important

for the performance of the multiple shooting and total

collocation methods [9]. This has been realized for the

Jacobian matrix calculation.

Figure 8. Schematic view of the required components of Ipopt

The multiple shooting algorithm uses an explicit

Runge-Kutta formula of order 3 as well as 3 steps with-

in each interval. The multiple collocation method uses

3 intermediate interval points based on Radau formulas.

The total collocation uses variant dependent intermedi-

ate interval points as described in section 5. The tests

have been performed using 128 intervals when dealing

with sparse matrix representation. The user defined

functions (see blue boxes of Figure 8) have been paral-

lelized.

7.1 Batch Reactor

The speedups obtained and the computation times for

the batch reactor are shown in Table 1 and Figure 9.

 multiple shooting multiple collocation

threads Ipopt jac_g Ipopt jac_g

1 1,5742s 28,93ms 18,47s 343,3ms

2 1,0164s 16,77ms 10,25s 188,3ms

4 0,6691s 9,37ms 5,825s 104,7ms

8 0,6539s 8,52ms 5,055s 89,57ms
Table 1. Computation times for the Jacobian of the constraints and
the over-all optimization using multiple shooting/collocation method

for the batch reactor

Figure 9. Speedups and computation times of the whole

optimization process

Table 1 shows that multiple collocation is much more

expensive than the multiple shooting. Reason for this is

the computational time needed to solve non-linear sys-

tems coming from the implicit discretization. There-

fore, by parallelizing the user defined functions a better

speedup (Figure 9) for the whole optimization can be

performed for the multiple shooting method, whereas

the speedup for the user defined function (e.g. Figure

10) is comparable.

Figure 10. Speedups and computation times for the Jacobian of the
constraints

Ipopt

constraints

Jacobian

object
function

gradient

Hessian of the
Lagrangian

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

664 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

7.2 Diesel Model

The solution process for the diesel model using multi-

ple shooting and multiple collocation is quite time con-

suming (see Table 2 and Table 3). Especially, the mul-

tiple collocation algorithm was only performed with 32

intervals in order to reduce execution time to an ac-

ceptable level. Although, parallelization of the user

defined function leads to a great speed up, the overall

performance of the multiple shooting or collocation

method is still poor. The total collocation variants are

superior with respect to the over-all performance as can

be seen in Table 3.

 multiple shooting multiple collocation

threads Ipopt jac_g Ipopt jac_g

1 1518,4s 1,8196s 368,07s 2,6007s

2 917,17s 0,9671s 196,04s 1,3832s

4 608,29s 0,5286s 108,33s 0,7625s

8 508,71s 0,3861s 87,027s 0,6110s
Table 2. Computation times for the Jacobian of the constraints and

the over-all optimization using multiple shooting/collocation method

for the diesel model

 total collocation 1 total collocation 2

threads Ipopt jac_g Ipopt jac_g

1 15,40s 8,215ms 14,07s 9,947ms

2 11,49s 4,356ms 10,10s 5,281ms

4 10,19s 2,553ms 8,342s 2,987ms

8 9,452s 1,713ms 7,897s 1,965ms
Table 3. Computation times for the Jacobian of the constraints and
the over-all optimization using total collocation method for the

diesel model

The speed-up regarding the user-defined function is

comparable to the multiple shooting or collocation

methods (see Figure 12). The speed-up of the whole

optimization process is not optimal due to the serial

computation and dense treatment of the Hessian matrix

calculated internally by Ipopt (see Figure 11).

Figure 11. Speedups and computation times of the whole
optimization process

Figure 12. Speedups and computation times for the Jacobian of the

constraints

8 Integration with OpenModelica

Support for specifying optimization goal functions and

constraints together with Modelica models has now

been implemented in OpenModelica. Such integrated

models can now be exported via XML to tools such as

CasADi [12] which can act as a frontend to ACADO

[13].

In the current OpenModelica prototype all aspects

of the tool chain are not yet completely implemented.

For example, we are currently using numerically de-

rived Gradients, Jacobians and Hessians since the au-

tomatic differentiation machinery in OpenModelica has

not yet been extended to operate on the optimization

problem goal function.

However, the prototype is complete enough to do

the measurements of the included model applications

on a parallel platform to obtain the speedup curves for

parallel execution on 1-8 cores.

The OpenModelica compiler has been extended to

export Modelica Models to XML based on an extended

version of the FMI XML schema from [14]. The XML

export, in addition to the standard Modelica syntax,

supports the Optimica extensions from Jmodelica [15].

Theses extensions allow users to formulate dynamic

optimization problems to be solved by a numerical al-

gorithm. The extensions include several constructs in-

cluding a new specialized class optimization, a con-

straint section, etc. See the batch reactor example be-

low as well as the Optimica manual for complete in-

formation.

optimization BatchReactor

 (objective = -x2(finalTime),

 startTime = 0, finalTime =1)

 Real x1(start=1,fixed=true,min=0,max=1);

 Real x2(start=0,fixed=true,min=0,max=1);

 input Real u(free=true, min=0, max=5);

equation

 der(x1) = -(u+u^2/2)*x1;

 der(x2) = u*x1;

end BatchReactor;

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 665
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

The XML generated for flattened Optimica Models can

be imported into other non-Modelica Optimization

tools like ACADO.

Currently the OpenModelica compiler does not yet

use the optimization problem formulation internally as

input to automatic differentiation. The Modelica plus

Optimica model description is flattened, some common

compilation phases are applied e.g. syntax, semantics

and type checking, simplification, constant evaluation

etc. and then the complete flat model is exported to

XML.

9 Conclusions

In this paper parallelized implementations of several

different algorithms for solving NOCP have been pre-

sented. The well-known multiple shooting or colloca-

tion as well as total collocation methods are derived

using a general discretization scheme. Total collocation

methods have proofed at least in the current implemen-

tation and for the tested applications to be superior to

the other algorithms.

The corresponding discretized optimization problem

has been solved by the interior optimizer Ipopt. Further

speedup of the optimization process for all described

algorithms have been achieved by parallelizing the cal-

culation of model specific parts (e.g. constraints, Jaco-

bians, etc.). So far the evaluation of derivatives have

been done numerically. This will be further improved

using the already available symbolic differentiation

capabilities of OpenModelica [11]. Finally, this work

will be continued by applying the proposed algorithms

on more industrial relevant applications together with a

thorough testing on advanced parallel hardware archi-

tectures.

10 Acknowledgements

This work has been partially supported by Serc, by SSF

in the EDOp project and by Vinnova as well as the

German Ministry BMBF (BMBF Förderkennzeichen:

01IS09029C) in the ITEA2 OPENPROD project. The

Open Source Modelica Consortium supports the

OpenModelica work.

References

[1] Open Source Modelica Consortium. OpenModel-

ica System Documentation Version 1.8.1, April

2012. http://www.openmodelica.org

[2] Modelica Association. The Modelica Language

Specification Version 3.2, March 24th 2010.

http://www.modelica.org. Modelica Association.

Modelica Standard Library 3.1. Aug. 2009.

http://www.modelica.org.

[3] Jasem Tamimi, Pu Li. A combined approach to

nonlinear model predictive control of fast sys-

tems. Journal of Process Control, 20, pp 1092–

1102, 2010.

[4] Biegler, Lorenz T. 2010. Nonlinear Program-

ming: Concepts, Algorithms, and Applications to

Chemical Processes. s.l. : Society for Industrial

Mathematics, 2010.

[5] Munz, Claus-Dieter and Westermann, Thomas.

2009. Numerische Behandlung gewöhlicher und

partieller Differenzialgleichungen. Berlin Heide-

berg : Springer Verlag, 2009

[6] Heuser, Harro. 2006. Gewöhnliche Differential-

gleichungen. Wiesbaden : Teubner Verlag, 2006.

[7] Tamimi, Jasem. 2011. Development of Efficient

Algorithms for Model Predictive Control of Fast

Systems. Düsseldorf: VDI Verlag, 2011.

[8] Friesz, Terry L. 2007. Dynamic Optimization and

Differential Games. US: Springer US, 2007.

[9] Folkmar, Bornemann und Deuflhard, Peter. 2008.

Numerische Mathematik: Numerische Mathema-

tik 2: Gewöhnliche Differentialgleichungen: Bd

II: [Band] 2. s.l. : Gruyter, 2008.

[10] Martin Sivertsson and Lars Eriksson Optimal

power response of a diesel-electric powertrain.

Submitted to ECOSM’12, Paris, France, 2012.

[11] Braun, Willi, Ochel Lennart and Bachmann

Bernhard. Symbolically Derived Jacobians Using

Automatic Differentiation - Enhancement of the

OpenModelica Compiler, Modelica Conference

2011

[12] Joel Andersson; Johan Åkesson; Moritz Diehl,

CasADi - A symbolic package for automatic dif-

ferentiation and optimal control, Proc. 6th Inter-

national Conference on Automatic Differentia-

tion, 2012.

[13] Houska, B., Ferreau, H.J., and Diehl, M. (2011).

ACADO toolkit - an open source framework for

automatic control and dynamic optimization. Op-

timal Control Applications & Methods, 32(3),

298-312.

[14] Functional Mock-up Interface:

http://www.functional-mockup-

interface.org/index.html

[15] Johan Åkesson. Optimica—An Extension of

Modelica Supporting Dynamic Optimization. In

6
th

 International Modelica Conference 2008.

Modelica. Association, March 2008

[16] Interior Point OPTimizer (Ipopt)

https://projects.coin-or.org/Ipopt

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

666 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

http://ww.ida.liu.se/projects/OpenModelica
http://www.modelica.org/
http://www.modelica.org/
http://www.functional-mockup-interface.org/index.html
http://www.functional-mockup-interface.org/index.html
https://projects.coin-or.org/Ipopt

11 Appendix A

Figure 13. Diesel Engine Model

Powertrain model

 ̇

Intake System

 Compressor

 (

)

 , ̇ ̇ √ (

) ,

 ̇
 ̇

√
,

 ̇ (

)

 Intake manifold

 ̇

(̇ ̇),

Cylinder

 Gas Flow

 ̇

, , ̇

 ,

 ̇

 ̇

()

 Torque

 ,

(),

, (

)

 ((

)

 (

)

)

 Temperature

,

 ̇

 ̇ ̇
,

(

)

()

(

)
((

)

())

Exhaust System

 Exhaust Manifold:

 ̇

(̇ ̇ ̇ ̇),

 Turbine

,

 (√ (

)

), (

) √

((

)

 (
)

),

 ̇

√
 , ̇ (

) , , ̇

 Wastegate

,

 ((

)

), √

((

)

 (
)

), ̇

√

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 667
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

Model Constants

Symbol Description Value Unit

 Ambient pressure 1.011e5 Pa

 Ambient temperature 298.46 K

 Specific heat capacity of air, constant pressure 1011 J/(kg.K)

 Specific heat capacity of air, constant volume 724 J/(kg.K)

 Specific heat capacity ratio of air 1.3964 -

 Gas constant, air 287 J/(kg.K)

 Specific heat capacity of exhaust gas, constant pressure 1332 J/(kg.K)

 Specific heat capacity ratio of exhaust gas 1.2734 -

 Gas constant, exhaust gas 286 J/(kg.K)

 Specific heat capacity ratio of cylinder gas 1.35004 -

 Intake manifold temperature 300,6186 K

 Pressure in exhaust system 1.011e5 Pa

() Stoichiometric oxygen-fuel ratio 14.54 -

 Diesel heating value 42.9e6 J/kg

Model Parameters

Symbol Description Value Unit

 Number of cylinders 6 -

 Engine displacement 0.0127

 Compression ratio 17.3 -

 Inertia of the engine-generator 3.5

 Volume of intake system 0.0218

 Compressor radius 0.04 M

 Max. compressor head parameter 1.5927 -

 ̇ Max. corrected compressor mass flow 1.2734 -

 Compressor efficiency 286 J/(kg.K)

 Volumetric efficiency 1.35004 -

 Combustion chamber efficiency 0.6774 -

 Friction efficiency 1.011e5 Pa

 Friction efficiency 14.54 -

 Friction efficiency 42.9e6 J/kg

 Non-ideal Seliger cycle compensation 1.054 -

 Ratio of fuel burnt during constant volume 0.4046 -

 Volume of exhaust manifold 0.0199

 Turbocharger inertia 1.9662 e-4

 Turbocharger friction 2.4358 e-5

 Effective turbine area 9.8938 e-4

 Turbine efficiency 0.7278 -

 Wastegate parameter 0.6679 -

 Wastegate parameter 5.3039 -

 Effective wastegate area 8.8357 e-4

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

668 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

