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Abstract 

Nonlinear model predictive control (NMPC) has be-

come increasingly important for today’s control engi-

neers during the last decade. In order to apply NMPC a 

nonlinear optimal control problem (NOCP) must be 

solved which in general needs high computational ef-

fort. 

State-of-the-art solution algorithms are based on 

multiple shooting or collocation algorithms, which are 

required to solve the underlying dynamic model formu-

lation. This paper describes a general discretization 

scheme applied to the dynamic model description 

which can be further concretized to reproduce the mul-

tiple shooting or collocation approach. Furthermore, 

this approach can be refined to represent a total colloca-

tion method in order to solve the underlying NOCP 

much more efficiently. Further speedup of optimization 

has been achieved by parallelizing the calculation of 

model specific parts (e.g. constraints, Jacobians, etc.) 

and is presented in the coming sections. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. The 

proposed parallelized algorithms have been tested on 

different applications. As industrial relevant application 

an optimal control of a Diesel-Electric power train has 

been investigated. The modeling and problem descrip-

tion has been done in Optimica and Modelica. The 

simulation has been performed using OpenModelica. 

Speedup curves for parallel execution are presented. 

 

Keywords: Modelica, Optimica, optimization, mul-

tiple shooting, collocation, parallel, simulation 

1 Introduction 

This paper presents efficient parallel implementations 

and measurement results of solution methods for non-

linear optimal control problems (NOCP) relevant for 

nonlinear model predictive control (NMPC) applica-

tions.  

NMPC as well as NOCP have become increasingly 

important for industrial applications during the last 

decade [3], [4]. State-of-the-art solution algorithms [4] 

are based on multiple shooting or collocation algo-

rithms, which are needed to solve the underlying dy-

namic model formulation. This paper concentrates on 

parallelizing these time-consuming algorithms, which 

finally lead to a very fast solution of the underlying 

NOCP. Moreover, a general discretization scheme ap-

plied to the dynamic model description is introduced, 

which can be further concretized to reproduce the 

common multiple shooting or collocation approach [7] 

and can also be refined to represent total collocation 

methods [4] in order to solve the underlying NOCP 

much more efficiently. The modeling and problem de-

scription is done in Modelica [2] extended with optimi-

zation goal functions and constraints specified as in 

Optimica [15]. The simulation is performed using 

OpenModelica [1]. Speedup curves for parallel execu-

tion are presented for application examples.  

Section 2 describes the underlying mathematical 

problem formulation including the objective function 

and constraints to the state and control variables. The 

general discretization scheme applied is discussed in 

Section 3. This approach can be further refined to rep-

resent multiple shooting or collocation algorithms for 

the solution process, which is described in Section 4. 
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In section 5 the general discretization scheme is fur-

ther developed towards total collocation methods.  

Industrial relevant Modelica applications are pre-

sented in Section 6. Parallel execution of the constraint 

equations of the NOCP is performed in Section 7. The 

results show reasonable speedups of the optimization 

time when it comes to time consuming calculation of 

the model equations. The necessary implementations 

are partly realized in the OpenModelica Compiler, 

which is described in Section 8. The paper concludes 

with a summary of the achieved results. 

2 The Nonlinear Optimal Control 

Problem (NOCP) 

The numerical solution of NOCP is performed by solv-

ing the following problem formulation [7][8]: 

 

   
 ( )

 ( ( )  ( )  )

  ( (  ))

 ∫  ( ( )  ( )  )

  

  

   

(2.1) 

subject to 

 (  )     (2.2) 

 ̇( )   ( ( )  ( )  ) (2.3) 

 ( ( )  ( )  )    (2.4) 

 ( (  ))    (2.5) 

where  ( )           ( )      are the state and 

control variables, respectively. The receding time hori-

zon is given by the interval  [     ]. The constraints 

(2.2), (2.3), (2.4) and (2.5) describe the initial condi-

tions, the nonlinear dynamic model description based 

on differential algebraic equations (DAEs, Modelica), 

the path constraints  ( ( ( )  ( )  )    ) and the 

terminal constraints. 

Support for time-optimal control and corresponding 

terminal constraints is work-in-progress and are not yet 

provided by the current implementation. 

2.1 Boundary Value Problems 

The objective function (2.1), that needs to be mini-

mized, includes conditions at the boundary time point 

    stated by the function  ( (  )) as well as condi-

tions taking into account the whole time horizon stated 

by ∫  ( ( )  ( )  )
  
  

  . 

 

Figure 1. Different trajectories achieved by varying control 
variables. Only one trajectory fulfills the terminal constraint (red 

dot).  

The function  ( (  )) describes conditions that 

should be fulfilled at the final time point similar to the 

terminal constraint (2.5). Since  ( (  )) is part of the 

objective function  ( ( )  ( )  ) the applied optimiza-

tion methods may not find a solution that fulfills the 

corresponding terminal constraints, but should be very 

close to it. The trajectories are influenced by changing 

the control variables. Different trajectories using differ-

ent control variables are visualized in Figure 1. 

On the other hand, different trajectories could fulfill 

the same terminal constraints. Taking into account the 

whole time horizon by minimizing the second part 

∫  ( ( )  ( )  )
  
  

   of the objective function will 

lead to the selection of the optimal trajectory. This be-

havior is visualized in Figure 2. 

 

Figure 2. Different trajectories that fulfill the terminal constraint.  

3 General Discretization Scheme 

In order to apply a general discretization scheme the 

NOCP formulation is rewritten to a general form which 

later can be used to derive the different possible numer-

ical algorithms e.g. multiple shooting, multiple or total 

collocation algorithm, etc. [6]. Equations (2.2) and 

(2.3) can be rewritten as follows: 

 ( )     ∫ ( ( )  ( )  )    

 

  

 (3.1) 
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When discretizing the time horizon  [     ] into a finite 

number of intervals  [     ]   [       ]  (e.g. equidis-

tant partitioning:                        
     

 
) integral in  (3.1) can be reformulated to 

∫ ( ( )  ( )  )   

 

  

 ∑∫  ( ( )  ( )  )   

    

  

   

   

  

(3.2) 

Each integral  

∫  ( ( )  ( )  )   

    

  

 (3.3) 

on a subinterval can now be treated independently, if 

additional constraints are added to the NOCP formula-

tion to force the calculation of an overall continuous 

solution. Therefore, locally the problem reduces to a 

boundary value problem [5] stated by  

  

  (    )     ∫  (  ( )  ( )  )   

    

  

 (3.4) 

where   ( )   ( ) for   [       ] ,          . 

It yields    (  )     and continuity is forced by addi-

tional constraints    (    )       added to the NOCP 

formulation, which finally leads locally to a boundary 

value problem. Each sub-problem (3.4) can be solved 

independently and in parallel, if multiple shoot-

ing/collocation is applied. By varying the control varia-

ble  ( )  in each sub-interval the solution of (3.4) can 

be influenced in order to fulfill the overall continuity 

constraints. In the current approach it is assumed that 

 ( )     is constant for each subinterval [       ]   

4 Multiple Shooting or Collocation 

Different numerical methods are available to solve 

equation (3.4). The first approach presented within this 

paper is the reformulation of (3.4) to an ordinary differ-

ential equation 

 ̇ ( )   (  ( )     ) (4.1) 

with the initial condition   (  )    . 
In order to solve equation (4.1) an appropriate (e.g. 

explicit/implicit) integration algorithm can be applied 

that is already available in OpenModelica. A schematic 

view of the algorithmic dependencies is presented in 

Figure 3.  

Alternatively, equation (3.4) or (4.1) can locally be 

solved using collocation methods, which also can be 

interpreted as numerical treatment of integration. De-

tailed descriptions of the multiple shooting algorithm 

using local collocation can be found in [7]. The solu-

tion process for equation (3.4) in each subinterval can 

be performed in parallel. The necessary calculation 

time depends certainly on the chosen integration meth-

od. In case of an explicit integration algorithm, e.g. 

Runge-Kutta based, more intermediate integration steps 

might be necessary for certain accuracy than using an 

implicit integration method, e.g. local collocation 

methods. On the other hand, explicit integration meth-

ods just perform at each intermediate step an evaluation 

of the model equations, whereas implicit methods in 

general need to solve a system of non-linear equations, 

which might also be time consuming. Nevertheless, 

when the underlying system of ordinary differential 

equations is stiff, implicit methods need to be applied. 

 
Figure 3. Schematic view of the algorithmic dependencies. 

Although, equation (3.4) can be solved in parallel a lot 

of time is used for finding exact solutions to a locally 

defined problem, which might not be relevant for the 

over-all problem stated by the (NOCP) formulation 

(2.1)-(2.5). Therefore, the solution process for the 

NOCP still needs a lot of computation time. The next 

section describes methods to overcome this deficiency 

by adding the locally derived residual equations (based 

on locally applied collocation methods) to the over-all 

NOCP formulation. 

5 Total Collocation 

Applying collocation methods for solving equation 

(3.4) locally leads in general to a system of non-linear 

equations for each sub-interval. The solution process of 

these equations might be time consuming and with re-

spect to the NOCP not efficient. If the corresponding 

non-linear equations are added to the NOCP formula-

tion and corresponding optimization algorithms have 

access to the intermediate points used by the local col-

location method a more efficient solution process can 

be formulated [4]. This section presents two different 

collocation methods. 

 

NOCP 

Discretizati
on Scheme 

Multiple 
shooting 

Numerical 
Treatment 

of 
Integration 
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Based on the common Lagrangian polynomial 

   ( ) for interpolation purposes, following abbrevia-

tions are introduced for           and         :  

        (  )  ∏
     
     

 

   
   

  

      
   

  
(  )  ∑

 

      

 

    
    

 ∏
      
      

 

    
    
     

       

∫      ∫    ( )

  

 

    

where         are the supporting points within the 

reference interval [   ]. Further abbreviations are de-

fined by                              (    ), 

and        (            ). 

 
Figure 4. Schematic view of the algorithmic dependencies. 

The first variant is dealing with the approximation of 

the states which leads to the following formulas: 

                 ∑    

 

   

      

                         ∑     

 

   

      

(5.1) 

In case of     this approach reduces to the implicit 

Euler formula with approximation order 1. 

The second variant is dealing with the approximation 

of the derivatives of the states and leads to the for-

mulas: 

                   ∑∫    

 

   

      

     ∑    

 

   

      

(5.2) 

In case of     this approach reduces to an implicit 

Runge-Kutta formula (trapezoidal rule) with approxi-

mation order 2. 

The discretized NOCP using total collocation and 

corresponding Gaussian quadrature formula for the 

integral part of the goal function is finally described by: 

   
 ( )

 ( ( )  ( )  )   (    )   

  ∑∑    (            )

 

   

 

   

 
(5.3) 

subject to 

 (            )   

 (    )    

 (            )   

 (    )   

 (5.4) 

for        ,        . For variant 1 the support-

ing points        , and weights        are given 

based on Radau formulas.               

 (            )               are the additional resid-

ual equations from (5.1). For variant 1 the supporting 

points        , and weights        are given 

based on Lobatto formulas.  (            )       

      are the additional residual equations from (5.2). 

6 Modelica Applications 

To investigate the performance of the proposed optimi-

zation algorithm, industrial relevant optimal control 

problems are solved and corresponding results are pre-

sented in this section.  

6.1 Batch Reactor 

We begin by considering a simple model from the 

chemical reactor described in [7] to maximize the yield 

of   ( ) by manipulation the reaction temperature  ( ), 
with the following problem formulation:   

   
 ( )

 ( ( )  ( )  )     ( ) (6.1) 

subject to 

 ̇ ( )   ( ( )  
  ( )
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 ̇ ( )   ( )    ( )
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    ( )
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where  ( )  (  ( )   ( ))
 

 and   [   ]. 
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Figure 5. Trajectories of state and control variables 

6.2 Optimal control of Diesel-Electric power-

train 

The Diesel-electric model based on [10] is presented in 

Appendix A. This concept is modeled according to a 

nonlinear mean value engine model (MVEM) contain-

ing four states and three control inputs while the gener-

ator model is simplified by considering constant effi-

ciency and maximum power over the entire speed 

range.  

In a Diesel-electric powertrain the operating point 

of the Diesel engine can be freely chosen which would 

potentially decrease fuel consumption. Moreover, the 

electric machine has better torque characteristics. These 

are the main reasons making the Diesel-electric power-

train concept interesting for further studies. 

To investigate the fuel optimal transients of the 

powertrain from idling condition to a certain power 

level while the accelerator pedal position is interpreted 

as a power level request, the following optimal control 

problem is solved: 

states    (

    
   
   
   

) , controls    (

  
   
    

) 

   ∫  ̇ 

 

 

   

subject to 

 ̇   
 
(           )

 ̇   
 
(        )

 ̇   
 
(              )

 ̇   
 
(           )

   
 
(     )    (     )

   
 
(     )    

(     )    (  )    (     )

  
 
  
(  )    (  )

 
  
(  )

  
  
(  )

 

                        

                        
                    
                          

         

 

and boundary conditions are: 

at     (

  
  
  
  

)                          

at     (

 ̇ 
 ̇ 
 ̇ 
 ̇ 

)   , (

  
  
  
  

)                  

and              . 

The constraints are originated from components’ limi-

tations and the functions    are described in the appen-

dix [10]. 

 
Figure 6. Trajectories of control variables 

In this work, we try to find the fuel optimal control 

and state trajectories in a certain time interval  [     ]. 
For simplicity, only diesel operating condition is as-

sumed which means (         ). 

 
Figure 7. Trajectories of state variables 
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The dynamic system is solved after it is discretized 

into subintervals. Figure 6 and Figure 7 show the ob-

tained control and state trajectories. As it is expected, 

the fuel optimal results happen when engine is acceler-

ated only near the end of the time interval (        ) 
to meet the end constraints while minimizing the fuel 

consumption. 

In section 7 it is shown how the parallel execution 

increases the performance of the optimization process.  

7 Parallel Execution and Perfor-

mance Measurements 

We have performed measurements for the different 

algorithms (multiple shooting/collocation and total col-

location with variant 1 and 2) applied to the above de-

scribed applications. The C/C++ source code has been 

compiled by gcc version 4.6.3 (GCC) with OpenMP 

support. The measurements are done on an Intel Core 

i7 CPU 870 with 8 cores @ 2.93 GH (4 real cores and 4 

virtual cores). 

The corresponding optimization problem is solved 

by the interior point optimizer Ipopt [16]. Figure 8 

shows the different functions and derivative infor-

mation that need to be provided to Ipopt for the solu-

tion process. In the current implementation the Hessian 

matrix of the corresponding Lagrangian formulation is 

calculated numerically by Ipopt. The other information 

(see Figure 8) is provided numerically by external rou-

tines. When calculating the Jacobian and Hessian ma-

trices the treatment of the sparsity patterns, is important 

for the performance of the multiple shooting and total 

collocation methods [9]. This has been realized for the 

Jacobian matrix calculation. 

 
Figure 8. Schematic view of the required components of Ipopt 

The multiple shooting algorithm uses an explicit 

Runge-Kutta formula of order 3 as well as 3 steps with-

in each interval. The multiple collocation method uses 

3 intermediate interval points based on Radau formulas. 

The total collocation uses variant dependent intermedi-

ate interval points as described in section 5. The tests 

have been performed using 128 intervals when dealing 

with sparse matrix representation. The user defined 

functions (see blue boxes of Figure 8) have been paral-

lelized. 

7.1 Batch Reactor 

The speedups obtained and the computation times for 

the batch reactor are shown in Table 1 and Figure 9. 

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1,5742s 28,93ms 18,47s 343,3ms 

2 1,0164s 16,77ms 10,25s 188,3ms 

4 0,6691s 9,37ms 5,825s 104,7ms 

8 0,6539s 8,52ms 5,055s 89,57ms 
Table 1. Computation times for the Jacobian of the constraints and 
the over-all optimization using multiple shooting/collocation method 

for the batch reactor 

 

 
Figure 9. Speedups and computation times of the whole 

optimization process 

Table 1 shows that multiple collocation is much more 

expensive than the multiple shooting. Reason for this is 

the computational time needed to solve non-linear sys-

tems coming from the implicit discretization. There-

fore, by parallelizing the user defined functions a better 

speedup (Figure 9) for the whole optimization can be 

performed for the multiple shooting method, whereas 

the speedup for the user defined function (e.g. Figure 

10) is comparable. 

 

 
Figure 10. Speedups and computation times for the Jacobian of the 
constraints 

Ipopt 

constraints 

Jacobian 

object 
function 

gradient 

Hessian of the 
Lagrangian 
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7.2 Diesel Model 

The solution process for the diesel model using multi-

ple shooting and multiple collocation is quite time con-

suming (see Table 2 and Table 3). Especially, the mul-

tiple collocation algorithm was only performed with 32 

intervals in order to reduce execution time to an ac-

ceptable level. Although, parallelization of the user 

defined function leads to a great speed up, the overall 

performance of the multiple shooting or collocation 

method is still poor. The total collocation variants are 

superior with respect to the over-all performance as can 

be seen in Table 3.  

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1518,4s 1,8196s 368,07s 2,6007s 

2 917,17s 0,9671s 196,04s 1,3832s 

4 608,29s 0,5286s 108,33s 0,7625s 

8 508,71s 0,3861s 87,027s 0,6110s 
Table 2. Computation times for the Jacobian of the constraints and 

the over-all optimization using multiple shooting/collocation method 

for the diesel model 

 

 total collocation 1 total collocation 2 

threads Ipopt jac_g Ipopt jac_g 

1 15,40s 8,215ms 14,07s 9,947ms 

2 11,49s 4,356ms 10,10s 5,281ms 

4 10,19s 2,553ms 8,342s 2,987ms 

8 9,452s 1,713ms 7,897s 1,965ms 
Table 3. Computation times for the Jacobian of the constraints and 
the over-all optimization using total collocation method for the 

diesel model 

The speed-up regarding the user-defined function is 

comparable to the multiple shooting or collocation 

methods (see Figure 12). The speed-up of the whole 

optimization process is not optimal due to the serial 

computation and dense treatment of the Hessian matrix 

calculated internally by Ipopt (see Figure 11). 

 

 
Figure 11. Speedups and computation times of the whole 
optimization process 

 
Figure 12. Speedups and computation times for the Jacobian of the 

constraints 

8 Integration with OpenModelica 

Support for specifying optimization goal functions and 

constraints together with Modelica models has now 

been implemented in OpenModelica. Such integrated 

models can now be exported via XML to tools such as 

CasADi [12] which can act as a frontend to ACADO 

[13]. 

In the current OpenModelica prototype all aspects 

of the tool chain are not yet completely implemented. 

For example, we are currently using numerically de-

rived Gradients, Jacobians and Hessians since the au-

tomatic differentiation machinery in OpenModelica has 

not yet been extended to operate on the optimization 

problem goal function. 

However, the prototype is complete enough to do 

the measurements of the included model applications 

on a parallel platform to obtain the speedup curves for 

parallel execution on 1-8 cores. 

The OpenModelica compiler has been extended to 

export Modelica Models to XML based on an extended 

version of the FMI XML schema from [14]. The XML 

export, in addition to the standard Modelica syntax, 

supports the Optimica extensions from Jmodelica [15]. 

Theses extensions allow users to formulate dynamic 

optimization problems to be solved by a numerical al-

gorithm. The extensions include several constructs in-

cluding a new specialized class optimization, a con-

straint section, etc. See the batch reactor example be-

low as well as the Optimica manual for complete in-

formation. 

optimization BatchReactor 

           (objective = -x2(finalTime), 

            startTime = 0, finalTime =1) 

  Real x1(start=1,fixed=true,min=0,max=1); 

  Real x2(start=0,fixed=true,min=0,max=1); 

  input Real u(free=true, min=0, max=5); 

equation 

  der(x1) = -(u+u^2/2)*x1; 

  der(x2) = u*x1; 

end BatchReactor; 

Session 6A: Optimization 

DOI Proceedings of the 9th International Modelica Conference    665 
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany   



The XML generated for flattened Optimica Models can 

be imported into other non-Modelica Optimization 

tools like ACADO. 

Currently the OpenModelica compiler does not yet 

use the optimization problem formulation internally as 

input to automatic differentiation. The Modelica plus 

Optimica model description is flattened, some common 

compilation phases are applied e.g. syntax, semantics 

and type checking, simplification, constant evaluation 

etc. and then the complete flat model is exported to 

XML. 

9 Conclusions 

In this paper parallelized implementations of several 

different algorithms for solving NOCP have been pre-

sented. The well-known multiple shooting or colloca-

tion as well as total collocation methods are derived 

using a general discretization scheme. Total collocation 

methods have proofed at least in the current implemen-

tation and for the tested applications to be superior to 

the other algorithms. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. Further 

speedup of the optimization process for all described 

algorithms have been achieved by parallelizing the cal-

culation of model specific parts (e.g. constraints, Jaco-

bians, etc.). So far the evaluation of derivatives have 

been done numerically. This will be further improved 

using the already available symbolic differentiation 

capabilities of OpenModelica [11]. Finally, this work 

will be continued by applying the proposed algorithms 

on more industrial relevant applications together with a 

thorough testing on advanced parallel hardware archi-

tectures. 
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11 Appendix A 

 
Figure 13. Diesel Engine Model 
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Model Constants 

Symbol Description Value Unit 

     Ambient pressure 1.011e5 Pa 

     Ambient temperature 298.46 K 

    Specific heat capacity of air, constant pressure 1011 J/(kg.K) 

    Specific heat capacity of air, constant volume 724 J/(kg.K) 

   Specific heat capacity ratio of air 1.3964 - 

   Gas constant, air 287 J/(kg.K) 

    Specific heat capacity of exhaust gas, constant pressure 1332 J/(kg.K) 

   Specific heat capacity ratio of exhaust gas 1.2734 - 

   Gas constant, exhaust gas 286 J/(kg.K) 

     Specific heat capacity ratio of cylinder gas 1.35004 - 

    Intake manifold temperature 300,6186 K 

    Pressure in exhaust system 1.011e5 Pa 

(   )    Stoichiometric oxygen-fuel ratio 14.54 - 

    Diesel heating value 42.9e6 J/kg 

 

Model Parameters 

Symbol Description Value Unit 

     Number of cylinders 6 - 

   Engine displacement 0.0127    

   Compression ratio 17.3 - 

        Inertia of the engine-generator 3.5      

    Volume of intake system 0.0218    

   Compressor radius 0.04 M 

     Max. compressor head parameter 1.5927 - 

 ̇           Max. corrected compressor mass flow 1.2734 - 

   Compressor efficiency 286 J/(kg.K) 

     Volumetric efficiency 1.35004 - 

       Combustion chamber efficiency 0.6774 - 

     Friction efficiency 1.011e5 Pa 

     Friction efficiency 14.54 - 

     Friction efficiency 42.9e6 J/kg 

    Non-ideal Seliger cycle compensation 1.054 - 

    Ratio of fuel burnt during constant volume 0.4046 - 

    Volume of exhaust manifold 0.0199    

    Turbocharger inertia 1.9662 e-4      

      Turbocharger friction 2.4358 e-5          

       Effective turbine area 9.8938 e-4    

   Turbine efficiency 0.7278 - 

      Wastegate parameter 0.6679 - 

      Wastegate parameter 5.3039 - 

        Effective wastegate area 8.8357 e-4    
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