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Abstract
HelmholtzMedia is a library for the calculation of fluid
properties. It is implemented in Modelica and pub-
lished under the Modelica license. All thermodynamic
state properties and their partial derivatives are calcu-
lated from a Helmholtz energy equation of state. Fur-
ther properties that can be calculated include surface
tension, viscosity and thermal conductivity.

Keywords: thermodynamic properties, Helmholtz
energy, surface tension, viscosity, thermal conductiv-
ity

1 Introduction
For the simulation and design of power or refrigera-
tion cycles, accurate properties of the working fluid
are indispensable. Themost accurate equations of state
(EoS) available today for a variety of working fluids are
fundamental EoS in terms of Helmholtz energy. From
such EoS all thermodynamic state properties, like pres-
sure 𝑝 or specific entropy 𝑠, as well as all partial deriva-
tives of thermodynamic state variables can be calcu-
lated.

Further properties of interest are surface tension,
viscosity and thermal conductivity. For each of these
properties an independent correlation is necessary.

Both the Helmholtz energy EoS as well as correla-
tions for additional properties have been implemented
in the HelmholtzMedia library. Details of the imple-
mentation are given in the following text.

2 Helmholtz energy fundamental
equation of state

A historical overview over the development of fun-
damental EoS in general is given by [2](in German),
an overview over the functional form used today by
almost all Helmholtz EoS is given by [8]. The inde-
pendent variables of the Helmholtz EoS are temper-
ature 𝑇 and specific volume 𝑣 or density 𝜚. Both
are non-dimensionalised by their critical values. The

Helmholtz energy 𝑓 is non-dimensionalised by the
specific gas constant 𝑅 and the temperature 𝑇 and split
up into an ideal gas part 𝛼0 and a residual part 𝛼r . This
allows for developing a functional form for the two
parts independently.

𝜏 = 𝑇c
𝑇 , 𝛿 = 𝑣c

𝑣 = 𝜚
𝜚c

, 𝛼 = 𝑓
R𝑇 = 𝛼0 + 𝛼r

The functional form for the description of the ideal
part of the Helmholtz energy results from the thermal
equation of state of the ideal gas and a two-fold inte-
gration of the heat capacity of the ideal gas. The heat
capacity of the ideal gas can be described by polynom-
inal terms, by so-called Planck-Einstein terms or by
a combination of the two. Alternatively, hyperbolic
functions can be used, but these have not been imple-
mented so far.

𝛼0(𝛿, 𝜏) = log (𝛿)

+
𝑖=𝑛𝐿

�්�=1
𝑙[𝑖,1] log බ𝜏 𝑙[𝑖,2]භ

+
𝑖=𝑛𝑃

�්�=1
𝑝[𝑖,1] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐸

�්�=1
𝑒[𝑖,1] ⋅ log බ1 − exp(𝑒[𝑖,2] ⋅ 𝜏)භ

The functional form for the description of the resid-
ual part of the Helmholtz energy as implemented uses
three groups of terms: polynominal terms, so-called
Benedict-Webb-Rubin terms and Gaussian bell-shaped
terms. For some fluids (e. g. CO2 or water) the func-
tional form contains additional non-analytical terms
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Table 1: Thermodynamic state properties [7]
Property Algorithm

pressure 𝑝 = 𝜚𝑇𝑅 බ1 + 𝛿𝛼r
δභ

entropy 𝑠 = 𝑅 බ𝜏(𝛼0
τ + 𝛼r

τ) − (𝛼0 + 𝛼r)භ
internal energy 𝑢 = 𝑇𝑅 බ𝜏(𝛼0

τ + 𝛼r
τ)භ

enthalpy ℎ = 𝑇𝑅 බ(1 + 𝛿𝛼r
δ) + 𝜏(𝛼0

τ + 𝛼r
τ)භ

Gibbs-energy 𝑔 = 𝑇𝑅 බ1 + (𝛼0 + 𝛼r) + 𝛿𝛼r
δභ

that have not been implemented so far.

𝛼r(𝛿, 𝜏) =
𝑖=𝑛𝑃

�්�=1
𝑝[𝑖,1] ⋅ 𝛿𝑝[𝑖,3] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐵

�්�=1
𝑏[𝑖,1] ⋅ 𝛿𝑏[𝑖,3] ⋅ 𝜏𝑏[𝑖,2] ⋅ exp බ−𝛿𝑏[𝑖,4]භ

+
𝑖=𝑛𝐺

�්�=1
𝑔[𝑖,1] ⋅ 𝛿𝑔[𝑖,3] ⋅ 𝜏𝑔[𝑖,2] ⋅ exp [

𝑔[𝑖,6] ⋅ (𝛿 − 𝑔[𝑖,9])2

+𝑔[𝑖,7] ⋅ (𝜏 − 𝑔[𝑖,8])2භ

A short discussion of all terms is given in [13, Section
5], a very comprehensive discussion is given in [7]. The
parameters of the two contributions to the Helmholtz
energy are then fitted to experimental data for each
fluid. Details on the fitting procedure can be found
in [7].

Once the functional form and values for the param-
eters are known, all state properties can be calculated
as simple combinations of the partial derivatives of the
Helmholtz energy1. Algorithms for the calculation of
the state properties are given in [7], an extract is re-
peated in Table 1.

In addition to the state properties, the partial
derivaties of state properties are often needed in engi-
neering applications, for example specific heat capaci-

1The partial derivatives of the Helmholtz energy are abbrevi-
ated as follows:

𝛼0
τ = ว

𝜕𝛼0

𝜕𝜏 ศ𝛿
, 𝛼0

ττ = ว
𝜕2𝛼0

𝜕𝜏2 ศ𝛿
, 𝛼0

τδ = ว
𝜕2𝛼0

𝜕𝜏𝜕𝛿 ศ

𝛼0
δ = ว

𝜕𝛼0

𝜕𝛿 ศ𝜏
, 𝛼0

δδ = ว
𝜕2𝛼0

𝜕𝛿2 ศ𝜏

𝛼r
τ = ว

𝜕𝛼r

𝜕𝜏 ศ𝛿
, 𝛼r

ττ = ว
𝜕2𝛼r

𝜕𝜏2 ศ𝛿
, 𝛼r

τδ = ว
𝜕2𝛼r

𝜕𝜏𝜕𝛿 ศ

𝛼r
δ = ว

𝜕𝛼r

𝜕𝛿 ศ𝜏
, 𝛼r

δδ = ว
𝜕2𝛼r

𝜕𝛿2 ศ𝜏

Table 2: Partial derivatives of state properties [10]
Property Algorithm

ว
𝜕𝑝
𝜕𝜚ศ𝑇

= 𝑇𝑅 බ1 + 2𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

ว
𝜕𝑝
𝜕𝑇 ศ𝜚

= 𝜚𝑅 බ1 + 𝛿𝛼r
δ − 𝛿𝜏𝛼r

τδභ

ว
𝜕𝑠
𝜕𝜚ศ𝑇

= 𝑅
𝜚 බ−(1 + 𝛿𝛼r

δ) + 𝜏𝛿𝛼r
τδභ

෷
𝜕𝑠
𝜕𝑇 ෸𝜚

= 𝑅
𝑇 බ−𝜏2(𝛼0

ττ + 𝛼r
ττ)භ

ว
𝜕𝑢
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδභ

෷
𝜕𝑢
𝜕𝑇 ෸𝜚

= 𝑅 බ−𝜏2(𝛼0
ττ + 𝛼r

ττ)භ

ว
𝜕ℎ
𝜕𝜚 ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδ + 𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

෷
𝜕ℎ
𝜕𝑇 ෸𝜚

= 𝑅 බ1 − 𝜏2(𝛼0
ττ + 𝛼r

ττ)
+𝛿𝛼r

δ − 𝜏𝛿𝛼r
τδභ

ว
𝜕𝑔
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ1 + 2𝛿𝛼r

δ + 𝛿2𝛼r
δδභ

ว
𝜕𝑔
𝜕𝑇 ศ𝜚

= 𝑅 බ(𝛼0 + 𝛼r) + (1 + 𝛿𝛼r
δ)

−𝜏(𝛼0
τ + 𝛼r

τ) − 𝜏𝛿𝛼r
τδභ

ties, the thermal expansion coefficient 𝛽, or the isother-
mal compressibility 𝜅. Any partial derivative can be
calculated in a two-step procedure: First, the partial
derivatives with respect to temperature and density, the
independent variables of the EoS, are formed. These
are given in [10] and repeated in Table 2. Second, all
further derivatives with respect to arbitrary state prop-
erties can then be transformed into simple combina-
tions of the partial derivatives with respect to temper-
ature and density, using the rules for Jacobian matrix
transformations.

For example, the partial derivatives of density with
respect to pressure and enthalpy, which are helpful for
transient simulation of power cycles, can be expressed
as

ว
𝜕𝜚
𝜕𝑝ศℎ

=
๙ว

𝜕𝑝
𝜕𝜚ศ𝑇

− ว
𝜕𝑝
𝜕𝑇 ศ𝜚 ว

𝜕ℎ
𝜕𝜚 ศ𝑇

෷
𝜕ℎ
𝜕𝑇 ෸

−1

𝜚 ๚

−1
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and

ว
𝜕𝜚
𝜕ℎศ𝑝

=
๙ว

𝜕ℎ
𝜕𝜚 ศ𝑇

− ෷
𝜕ℎ
𝜕𝑇 ෸𝜚 ว

𝜕𝑝
𝜕𝜚ศ𝑇 ว

𝜕𝑝
𝜕𝑇 ศ

−1

𝜚 ๚

−1

.

More examples are given in [10].

3 Vapor-liquid equilibrium and two-
phase state

The vapour-liquid equilibrium (VLE) of a pure fluid is
characterized by three conditions:

thermal equilibrium: Δ𝑇 = (𝑇 າ − 𝑇 ຳ) = 0
mechanical equilibrium: Δ𝑝 = (𝑝າ − 𝑝ຳ) = 0
chemical equilibrium: Δ𝑔 = (𝑔າ − 𝑔ຳ) = 0.

For a given temperature 𝑇 the equilibrium state can
be determined by simultaneously solving the equation
for mechanical and chemical equilibrium. Using the
relations from Table 1 the mechanical equilibrium can
be rewritten as

Δ𝑝 = 𝜚າR බ1 + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝜚ຳR බ1 + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

and the chemical equilibrium as

Δ𝑔 = 𝑇R බ1 + 𝛼0(𝛿າ, 𝜏) + 𝛼r(𝛿າ, 𝜏) + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝑇R බ1 + 𝛼0(𝛿ຳ, 𝜏) + 𝛼r(𝛿ຳ, 𝜏) + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

resulting in two equations with 𝜚າ and 𝜚ຳ as two un-
knowns. These two equations can be simplified by
canceling out the constant and purely temperature-
dependent parts and then be solved simoultaneously
using a Newton-Raphson algorithm as described in [1].
A simplified flowchart for this algorithm is shown in
Figure 1. The actual implementation uses dimension-
less, scaled variables and gradients.

Once the VLE and the respective saturation states
are known, all state properties can be calculated using
the vapour mass fraction 𝑥. It is defined as

𝑥 = 𝑚ຳ

𝑚າ + 𝑚ຳ = mass of vapour
mass of liquid + mass of vapour .

Using 𝑚 = 𝑚າ + 𝑚ຳ and 𝑣 = 𝑉/𝑚 this can be re-written
as

𝑥 = 𝑣 − 𝑣າ

𝑣ຳ − 𝑣າ = 1/𝜚 − 1/𝜚າ

1/𝜚ຳ − 1/𝜚າ .

..Specify T.

Guess
𝜚ᄤ and 𝜚"

.

Calculate
Δ𝑝 = 𝑝(𝑇, 𝜚ᄤ) − 𝑝(𝑇, 𝜚")
Δ𝑔 = 𝑔(𝑇, 𝜚ᄤ) − 𝑔(𝑇, 𝜚")

.

Δ𝑝 = 0 and
Δ𝑔 = 0?

.

Calculate better
𝜚ᄤ and 𝜚"
by using

Δ𝑝 and Δ𝑔
and

ึ
𝜕𝑝
𝜕𝜚ื𝑇

and ึ
𝜕𝑔
𝜕𝜚 ื𝑇

.

𝜚ᄤ and 𝜚" found

.

No

.

Yes

Figure 1: Simplified flowchart for finding the vapour-
liquid-equilibrium iteratively, adapted from [1]

Solving for 𝑣 yields

𝑣 = 𝑥𝑣ຳ + (1 − 𝑥)𝑣າ = 𝑣າ + 𝑥(𝑣ຳ − 𝑣າ) .

All other state properties can be calcuted in the same
manner.

In order to calculate the partial derivatives of state
properties within the two-phase region, the derivatives
along the saturation line are needed. The derivatives
of saturation pressure and temperature along the satu-
ration line are given by the Clausius-Clapeyron equa-
tion:

ว
d𝑝σ
d𝑇 ศ = 𝑠ຳ − 𝑠າ

𝑣ຳ − 𝑣າ = 1
𝑇

ℎຳ − ℎາ

𝑣ຳ − 𝑣າ

ว
d𝑇σ
d𝑝 ศ = 𝑣ຳ − 𝑣າ

𝑠ຳ − 𝑠າ = 𝑇 𝑣ຳ − 𝑣າ

ℎຳ − ℎາ .

These derivatives can then be used to calculate arbi-
trary derivatives along the saturation line, and, in a
second step, partial derivaties within the two-phase
state [10].

4 Iterative procedures
So far, it was assumed that temperature 𝑇 and density 𝑑
are known. But the thermodynamic state can as well be
defined by specifying any other combination of two in-
dependent state variables. In engineering applications,
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..Specify:
𝑝 and 𝑇

.

Check 𝑇

.

Iteratively determine
vapour-liquid equilibrium

→ 𝑝σ

.

Check 𝑝

.

liquid:
𝜚ᄤ < 𝜚 < 𝜚max

.

two-phase region:
𝑝 and 𝑇 coupled

.

Gas:
0 < 𝜚 < 𝜚ᄥ

.

super-critical:
0 < 𝜚 < 𝜚max

.

𝑇 < 𝑇c

.

𝑝 > 𝑝σ

.

𝑝 = 𝑝σ

.

𝑝 < 𝑝σ

.

𝑇 > 𝑇c

Figure 2: Simplified flowchart for determination of
density iteration bounds when pressure and tempera-
ture are specified

the known variable combinations often are (𝑝, 𝑇), (𝑝, ℎ)
or (𝑝, 𝑠). When any of these combinations is given, the
corresponding (𝑇, 𝑑) have to be determined iteratively.
Two examples of such iterative procedures are given
below.

4.1 Density as a function of temperature and
pressure

By specifying pressure and temperature, only single-
phase states can be described, because in the two-phase
region pressure and temperature are not independent.
In order to find the density correspondig to the given
pressure in the single-phase region, a residual function
is defined as

𝑅𝐸𝑆(𝜚) = 𝑝 − 𝑝calc(𝜚, 𝑇) .

As 𝑝 = 𝑝(𝜚) is strictly montonic for a given temper-
ature, the residual function is as well strictly mono-
tonic and has one single root. Finding the root of the
residual function is then equal to finding the density
corresponding to the specified pressure. In literature
many algorithms for root finding are known, this li-
brary uses the algorithm byBrent [3]. It is implemented
in theModelica Standard Library as Modelica.Math.
Nonlinear.solveOneNonlinearEquation. The
mandatory input for this algorithm is a residual func-
tion and a lower and upper bound. A flowchart for find-
ing the upper and lower bounds of density is shown in
Figure 2.

Once the density is known, all state properties can
be calculated using the relations given in Table 1 with

..Specify
𝑝 and ℎ

.

Check 𝑝

.

Iteratively determine
vapour-liquid equilibrium

→ 𝑇σ and ℎᄤ and ℎᄥ

.

Check ℎ

.

liquid:
𝑇min < 𝑇 < 𝑇σ

.

two-phase region:
𝑇 = 𝑇σ und 𝑥 = 𝑥(ℎ)

.

vapour:
𝑇σ < 𝑇 < 𝑇max

.

super-critical:
𝑇min < 𝑇 < 𝑇max

.

𝑝 < 𝑝c

.

ℎ < ℎᄤ

.

ℎᄤ ≤ ℎ ≤ ℎᄥ

.

ℎ > ℎᄥ

.

𝑝 > 𝑝c

Figure 3: Simplified flowchart for determination of
temperature iteration bounds when pressure and en-
thalpy are specified

density and temperature as input. In the following sec-
tion, enthalpy and entropy are needed as a function of
pressure and temperature. These are calculated by first
calculating the density iteratively and then calculating
enthalpy and entropy using temperature and density as
input variables.

4.2 Density and temperature as a function of
pressure and enthalpy

By specifying pressure and specific enthalpy, it is pos-
sible to describe single-phase as well as two-phase
states. If the pressure is below critical pressure, the
first step thus is to determine the vapour-liquid equi-
librium corresponding to the specified pressure. The
algorithm for VLE determination as described in sec-
tion 3 uses temperature as input. When the VLE is to
be determined from a specified pressure, the residual
funtion

𝑅𝐸𝑆(𝑇) = 𝑝 − 𝑝σ,calc(𝑇)

is used. The lower bound and uper bound for the tem-
perature are the triple temperature and the critical tem-
perature. The VLE information is then used to deter-
mine the region and temperature iteration bounds as
shown in Figure 3.

Density and temperature can then be determined us-
ing the Brent algorithm and the residual funtion

𝑅𝐸𝑆(𝑇) = ℎ − ℎcalc(𝑝, 𝑇) ,

where ℎcalc(𝑝, 𝑇) already is an iterative funtion, as de-
scribed earlier.
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5 Ancillary equations
For the determination of the region during the iter-
ative procedures the vapour pressure and the satura-
tion states have to be evaluated. In order to mini-
mize the computational effort, three ancillary equa-
tions are given that are sufficiently precise for a first
region check. Only if the thermodynamic state is very
close to or within the two-phase region the VLE has to
be determined from the EoS for best consistency.

Additionally, the results from the ancillary equations
are used as start values for the iterative determination
of the VLE from the EoS.

5.1 Vapour pressure
The vapour pressure increases sharply with increasing
temperature, as shown in Figure 4. The HelmholtzMe-
dia library uses the vapour pressure equation suggested
by [12]:

ln ว
𝑝σ
𝑝c ศ = 𝑇c

𝑇 ⋅ ් 𝑎𝑖 ว1 − 𝑇
𝑇c ศ

𝑛𝑖
.

This vapour pressure equation can be solved for tem-
perature numerically only.

5.2 Density of saturated liquid and saturated
vapour

Six models are implemented for the saturated density.
These are similar to the models implemented in Ref-
Prop [5]. As before the reduced density 𝛿 and the re-
duced inverse temperature 𝜏 are defined as

𝛿 = 𝜚
𝜚c

𝜏 = 𝑇c
𝑇 .

The reduced density 𝛿 at saturation is calculated in a
two-step procedure:

Θ =
⎧⎪
⎪
⎨
⎪
⎪⎩

ว1 − 𝑇
𝑇c ศ model 1,3 or 5

ว1 − 𝑇
𝑇c ศ

1/3
model 2,4 or 6

and

𝛿 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 + ් 𝑎𝑖Θ𝑛𝑖 model 1 or 2

exp ෷් 𝑎𝑖Θ𝑛𝑖෸ model 3 or 4

exp ෷𝜏 ් 𝑎𝑖Θ𝑛𝑖෸ model 5 or 6.

Multiplying the reduced density 𝛿 with the critical den-
sity 𝜚c then yields the density 𝜚.

6 Further properties
6.1 Surface Tension
The surface tension 𝜎 between liquid and vapour phase
decreases with saturation temperature approaching the
critical temperature. This is modeled according to [6]:

𝜎 = ් 𝑎𝑖 ว
𝑇c − 𝑇σ

𝑇c ศ
𝑛𝑖

.

6.2 Viscosity
In this library two viscosity models are implemented
that are similar to the models implemented in Ref-
Prop [5]. In both models, the viscosity is split into three
contributions: the dilute gas viscosity 𝜂0, the initial
density viscosity 𝜂1 and the residual viscosity 𝜂r . This
allows for an individual model for each contribution.

𝜂 = 𝜂0(𝑇) + 𝜂1(𝜚, 𝑇) + 𝜂r(𝜚, 𝑇) .

6.3 Thermal conductivity
One thermal conductivity model has been imple-
mented that is similar to the model implemented in
RefProp [5]. The thermal conductivity is split into
three contributions: the dilute gas thermal conductiv-
ity 𝜆0, the residual thermal conductivity 𝜆r and the crit-
ical enhancement contribution 𝜆c. Each contribution is
then individually modeled.

𝜆 = 𝜆0(𝑇) + 𝜆r(𝜚, 𝑇) + 𝜆c(𝜚, 𝑇) .

7 Modelica implementation
This library is compatible to and based on
Modelica.Media [4]. HelmholtzMedia defines a
partial package PartialHelmholtzMedium which
extends from Modelica.Media.Interfaces.
PartialTwoPhaseMedium. All functions available in
the base class are either inherited without modification
or they are modified by implementing a new algorithm.

The Record ThermodynamicState contains den-
sity, temperature, pressure, specific enthalpy, specific
internal energy and specific entropy. Compared to the
base class, specific entropy was added. The Record
SaturationProperties was modified by adding the
states liq and vap.

Where possible, annotation(inverse=…); and
annotation(derivative=…); were used.

For fluids that can be modeled by the implemented
algorithms, adding a new fluid is done by extending
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Figure 4: Vapour pressure as a function of temperature

from PartialHelmholtzMedium and modifying the
parameters for the algorithms. The parameters need to
be copied from the respective publications and saved
in the format used by HelmholtzMedia. RefProp [5]
comes with a comprehensive compilation of these pa-
rameters, so that RefProp licencees could alternatively
copy them from the RefProp fluid files. So far, six
fluids have been implemented: n-Butane, Isobutane,
Isopentane Propane, R134a and Ethanol. The parame-
ters for these six fluids have been copied fromRefProp.

8 Summary and Outlook
The most accurate equations of state (EoS) available
today for a variety of working fluids are fundamental
EoS in terms of Helmholtz energy. The HelmholtzMe-
dia library implements the Helmholtz energy EoS in
a generalized form that makes adding more fluids very
easy. In addition to the equation of state, algorithms for
the calculation of viscosity, thermal conductivity and
surface tension are given, as well as ancillary equations
for saturation properties that speed up iterative proce-
dures. Apart from these ancillary equations, the library
is not optimized for speed.

Possible extensions for future versions include the
addition of non-analytic terms for the residual part of
the Helmholtz energy and hyperbolic terms for the
ideal part of the Helmholtz energy. For viscosity and
thermal conductivity twomore models could be added,
an extended corresponding states model and a model
based on the generalized friction theory.

In order to add accurate EoS for mixtures like the

GERG-2008 model, a template for multi-component
multi-phase media would be necessary. The structure
of Modelica.Media might change in a future version
of the Modelica Standard Library [11].

The library is completely written in Modelica and
released as open-source under the terms of the Model-
ica license. Anybody interested in the library is invited
to contribute; the source code and an issue tracker are
available at [9].
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