

An OpenModelica Python Interface and its use in PySimulator

Anand Kalaiarasi Ganeson
1
, Peter Fritzson

1
, Olena Rogovchenko

1
, Adeel Asghar

1
, Martin Sjölund

1

Andreas Pfeiffer
2

1
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
2
Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen

1
ganan642@student.liu.se, {peter.fritzson, olena.rogovchenko, adeel.asghar, martin.sjolund}@liu.se

2
Andreas.Pfeiffer@dlr.de

Abstract

How can Python users be empowered with the robust

simulation, compilation and scripting abilities of a non-

proprietary object-oriented, equation based modeling

language such as Modelica? The immediate objective

of this work is to develop an application programming

interface for the OpenModelica modeling and simula-

tion environment that would bridge the gap between the

two agile programming languages Python and Modeli-

ca.

The Python interface to OpenModelica – OMPy-

thon, is both a tool and a functional library that allows

Python users to realize the full capabilities of

OpenModelica's scripting and simulation environment

requiring minimal setup actions. OMPython is designed

to combine both the simulation and model building

processes. Thus domain experts (people writing the

models) and computational engineers (people writing

the solver code) can work on one unified tool that is

industrially viable for optimization of Modelica mod-

els, while offering a flexible platform for algorithm

development and research.

Keywords: Python, OpenModelica, OMPython, Python,

simulation, modeling, Modelica, Python simulator.

1 Introduction

Necessity is the mother of all inventions. Often in sci-

ence and engineering, the insufficiency of available

tools for researchers and developers creates difficulties

in exploring and investigating a certain subject. This

creates incentives to develop new infrastructures and

tools to fill the void. The goal behind the creation of the

Python interface to OpenModelica is to create a free,

open source, highly portable, Python based interactive

session handler for Modelica scripting and modeling,

thus catering to the needs of the Python user communi-

ty.

OMPython – the Python interface to OpenModelica

is developed in Python using tool communication based

on OmniORB and OmniORBpy - high performance

CORBA ORBs for Python. It provides seamless sup-

port to the Modelica Standard Library and the Modelica

Language Specification [3] supported by OpenModeli-

ca [2].

OMPython provides user-friendly features such as:

 Interactive session handling, parsing, interpretation

of commands and Modelica expressions for evalua-

tion, simulation, plotting, etc.

 Creating models, using pre-defined models, making

component interfaces and annotations.

 Interface to all OpenModelica API calls.

 Optimized result parser that gives access to every

element of the OpenModelica Compiler's (OMC)

output.

 Helper functions to allow manipulation of nested

dictionary data types.

 Easy access to the Modelica Standard library and

calling of OpenModelica commands.

 Provides an extensible, deployable and distributable

unit for developers.

Since OMPython is designed to function like a library,

it can be used from within any Python application that

requires the OpenModelica services. OMPython uses

the CORBA implementation of OmniORB and Om-

niORBpy to communicate with the OpenModelica

compiler.

2 Using OMPython

This section describes how to use OMPython and also

demonstrates its use in creating a simple Modelica

model callable from the Python interpreter. It also pre-

sents the two modes of operation specifically designed

for testing OpenModelica commands and using the

OMPython API as a Python library [1].

DOI Proceedings of the 9th International Modelica Conference 537
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

2.1 Installing OMPython

The two requirements for the operation of the API are

installations of OpenModelica 1.8.1 and Python 2.6.

Since OMPython is supplied together with the

OpenModelica installer, the standard source distribu-

tion of the API can be used to install it to the third party

libraries of the installed Python version. Building and

installing the module, for example in the Windows sys-

tems, is as simple as running one line of command

from the terminal.

python setup.py install

Now OMPython can be imported into any Python ap-

plication.

2.2 Executing OMPython

The API can be used in two modes, Test and Library,

each designed for a specific purpose.

2.2.1 Test

Like any new tool, it is important to give its users the

freedom to easily explore its capabilities, try its features

and possibly suggest new improvements.

For this purpose, the API can be executed in the test

mode by executing the run() method of the OMPython

module. This mode allows users to interactively send

OpenModelica commands to OMC via the CORBA

interface. The Python types of the OpenModelica out-

put are returned to the user. To illustrate this, in Figure

1 a few operations are presented from the Python ter-

minal.

Figure 1. OMPython executing OpenModelica commands

in the Test mode.

Creating new models in the text based Python terminal

is rather straightforward using OMPython. Figure 2

illustrates this and shows how a model can be saved

with a simple command.

Figure 2. Creating and saving a simple HelloWorld model

file using OMPython.

2.2.2 Library

Once modelers are familiar with the interface they

know what type of responses can be expected and can

use the module as a library to programmatically design,

simulate, plot, and do more with the models.

This can be done by executing the execute()

method of the OMPython module. The execute method

forms the essence of the OMPython API. It encapsu-

lates the OMC operations, CORBA functionalities,

parses the results to native Python data types and ex-

poses the API as a simple string processing method.

Each instance of the execute method returns a result

that the modeler can make use of. Additionally, com-

plicated data structures such as deeply nested dictionar-

ies are constructed, strictly typed, and are made availa-

ble to the user using this method.

The Code Listing 1 shown below provides a simple

Python script that uses OMPython as a library to per-

form a few tasks like loading Modelica libraries to

simulating pre-defined Modelica models. Figure 3 de-

picts the output of the program generated by OMPy-

thon on a standard Python terminal.

Code Listing 1

import OMPython

OMPython.execute("loadFile(\"c:/OpenModeli

ca1.8.1/testmodels/BouncingBall.mo\")")

result=OMPython.execute("simulate(Bouncing

Ball, stopTime=2, method=\'Euler\')")

print result

OMPython.execute("quit()")

An OpenModelica Python Interface and its use in PySimulator

538 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

Figure 3. OMPython executing the Python script shown

above.

3 Deploying OMPython in

PySimulator

PySimulator is a Python-based Simulation and Analysis

tool that is developed by the German Aerospace Center

(DLR) in Germany. The tool uses plugins for simula-

tors based on Dymola [10], FMUs [11], and OpenMod-

elica [2]. It also provides analysis tools for some appli-

cations particularly in physics and engineering.

This section shows the integration of the new

OpenModelica simulator plugin for PySimulator using

OMPython.

3.1 The OpenModelica Plugin

The plugin for the OpenModelica simulator integrates

easily and well into the PySimulator package by using

the OMPython library. PySimulator's template for the

plugins provides convenient methods to implement

simulation routines, parameter settings, retrieve and use

simulation variables and more. Figure 4 shows a part of

the development package of PySimulator that includes

the OpenModelica plugin.

Figure 4. OpenModelica plugin using OMPython within

PySimulator.

The OpenModelica plugin defines and uses some fea-

tures of PySimulator for performing simulations, read-

ing result files, and displaying variables etc. The

plugins use PySimulator's plugin templates; this allows

other simulation packages to be integrated easily.

The deployment of the OpenModelica plugin within

the PySimulator project allows the project to benefit

from the full scripting capabilities of the latest

OpenModelica API.

3.2 Loading a Modelica Model

The integration of the OMPython module within the

OpenModelica plugin for PySimulator makes it possi-

ble for the modeler to quickly load Modelica files such

as models (.mo) or load a simulated model's executable

file.

The user can open these files from the menu bar by

selecting File > Open Model > OpenModelica.

In this introductory example we will use a pre-

defined model named Influenza to demonstrate the

use of OMPython in PySimulator. Figure 5 depicts the

graphical user interface of PySimulator when opening a

model file. Once the model file is selected, the model is

loaded into the variables browser and is ready to be

configured for simulations.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 539
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

Figure 5. Loading Modelica models or model executables

in PySimulator

3.3 Using the OpenModelica plugin

The loaded Modelica model can be simulated from Py-

Simulator using the default simulation options or by

setting the simulation options before simulating from

the Integrator Control dialog box. The OpenModelica

plugin defines the simulation routine for the Modelica

models by using the execute method of the OMPython

API.

Figure 6 shows how the simulation options can be

set using PySimulator's Integrator control feature.

Figure 6. Preparing the simulation settings using the

Integrator Control.

3.4 Simulating the model

The initial simulation parameters and settings are pro-

vided as inputs to the OMC via the front-end of Py-

Simulator. The Run button of the Integrator control

triggers the simulate command of the OMC with the

supplied simulation options. The simulate command

has the following parameters,

 Simulation Interval

o Start Time

o Stop Time

 Algorithm

 Error Tolerance

 Step size

The user has the option to choose from a range of Nu-

merical integration algorithms from the Algorithm se-

lection box. The Integrator control dialog box also fil-

ters some parameters that are not available for some

integration solvers by disabling the field; avoiding error

and providing more accuracy in the results.

The Variables browser builds a tree structure of the

instance variables and highlights time-continuous vari-

ables in blue. The user can select these variables and

plot them in the Plot window by checking the check

box near the highlighted variables.

Figure 7 illustrates the Variables browser that al-

lows users to access the variables after the Influenza

model has been simulated with some simulation pa-

rameters set.

Figure 7. Variables browser of the simulated model.

3.5 Plotting variables from the simulated models

The Plot window of the PySimulator GUI provides ad-

ditional user interface controls for comparing different

An OpenModelica Python Interface and its use in PySimulator

540 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

plots side-by-side, adding and removing plots and also

to save the plots.

Figure 8 shows the plotted variables in the plot win-

dow and the list of simulation variables in the Variables

browser along with the variables selected for plotting.

Figure 8. Plotted variables using PySimulator.

3.6 Using Simulated results

It is desirable to avoid simulating the model again eve-

ry time the user needs the simulation results. It is in-

stead preferable to use an existing simulation result file

for the calculations, this saves resources and time. Py-

Simulator supports opening the OpenModelica simula-

tion result files (.mat) and the model's executable file to

build the variable tree in the variables browser. The

user can then adjust some parameters from the variable

tree or the Integrator control to achieve the desired re-

sults.

4 The OMPython API

The Python interface to OpenModelica addresses its

functional requirements through the implementation of

two interrelated modules, OMPython and OMParser

[1]. This section introduces the two modules and

demonstrates their functionalities with some examples.

The following Figure 9 illustrates the functions of

the OMPython API with its components.

Figure 9. Functions of the OMPython API

4. 1 OMPython module

The OMPython module is the main interfacing

module of the OMPython API which is responsible

for providing the API as a tool and a Python library.

The following are its components:

4.1.1 Interactive Session handler

Each instance of the module creates an interactive

session between the user and the OMC. The session

handler uses the CORBA Interoperable Object Ref-

erence (IOR) file to maintain the user's session activ-

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 541
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

ities and log files for standard output and errors. The

session is closed down when the user issues the

quit() command to the OMC. This also removes

the temporary IOR file from the user's machine. The

log files facilitate the user with some straight for-

ward debugging and trace-backing purposes.

4.1.2 CORBA Communication

OMPython uses the Client-Server architecture of the

CORBA mechanism to interact with the OMC. OM-

Python implements the client side of the architec-

ture.

4.1.3 Modes of Operation

The module defines two modes of operation, each

designed for specific purposes.

 Test

 Library

The Test mode allows users to test OMPython while

the Library mode gives the user the ability to use the

results of OMPython.

4.1.4 Using the interface definition

The vital link between the client and the server pro-

cesses in this distributed implementation is the Inter-

face Definition Language (IDL) file. OMC defines

the omc_communication.idl file that it uses to

implement the Remote Procedure Calls (RPCs),

OMPython mirrors this IDL file to establish the RPC

from the client machine.

4.1.5 Get/Set helper functions

Due to the nature of the complicated string outputs

generated by the OMC such as Component Annota-

tions, the parser module of the OMPython module

generates nested dictionaries. Deeply nested diction-

aries in Python require cumbersome operations to

retrieve and set values inside dictionaries at various

levels. To simplify the multiple steps necessary to

perform a get or set operation within a dictionary,

OMPython defines the dot-notation get/set methods.

Figure 10 shows how the user can get and set the

values of any nested dictionary data type.

Figure 10. Get/Set helper function

4.1.6 Universal Typecaster

Since the variables in Python are dynamically typed,

the interpretation of the data types needs to be strict-

ly controlled during runtime. For this purpose, the

OMPython module defines a universal typecasting

function that typecasts the data to the correct types

before building the results.

4.1.7 Imports OMParser

Although the OMC outputs the results to the OMPy-

thon module via its CORBA interface, the results are

still in the String-to-String CORBA output format

which cannot be used intelligibly. So the OMPython

module uses its own built-in parser module the OM-

Parser to generate appropriate data structures for the

OMC retrieved results.

4.2 OMParser module

Since the results of the OMC are retrieved in a

String format over CORBA, some data treatment

must be done to ensure that the results are usable

correctly in Python.

The OMParser module is designed to do the fol-

lowing,

 Analyze the result string for categorical data.

 Group each category under a category name

 Typecast the data within these categories

 Build suitable data structure to hold these data so

that the results are easily accessible.

4.2.1 Understanding the Parsed output

Each command in OpenModelica produces a result

that can be categorized according to the statistics of

the pattern of data presented in the text. Grammar

based parsers were found to be tedious to use be-

An OpenModelica Python Interface and its use in PySimulator

542 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

cause of the complexity of the patterns of data. This

is also the case because the OpenModelica imple-

mentation has two types of APIs. One is typed,

which could use grammar and the other is untyped,

which cannot.

OMParser follows a few simple rules to parse the

OMC output:

 Result strings that do not contain a pair of curly

braces "{}" are simply typecasted to their respec-

tive types.
For example:

>>getVectorizationLimit()

20

>>getNthInheritedClass(Modelica.Electr

ical.Analog.Basic.Resistor,1)

Modelica.Electrical.Analog.Interfaces.

OnePort

 Result strings that include one or more pairs of

curly braces "{}" are categorized for making dic-

tionary types.

For example:
>>getClassNames()

{'SET1':{'Set1': ['ModelicaServices',

'Modelica']}}

 Data contained within double quotes " " are for-

matted to string types; removing the escape se-

quences in-order to keep the semantics.

For example:
>>getModelicaPath()

"C:/OpenModelica1.8.0/lib/omlibrary"

4.2.2 The Dictionary data type in Python

Dictionaries are useful as they allow to group data

with different data types under one root dictionary

name. Dictionaries in Python are indexed by keys

unlike sequences, which are indexed by a range of

numbers.

It is best to think of dictionaries as an unordered

set of key:value pairs, with the requirement that the

keys are always unique. The common operation on

dictionaries is to store a value associate with a key

and retrieve the value using the key. This provides

us the flexibility of creating keys at runtime and ac-

cessing these values using their keys later. All data

within the dictionary are stored in a named diction-

ary. An empty dictionary is represented by a pair of

braces {}.

In the result returned by the OMC, the compli-

cated result strings are usually the ones found within

the curly braces. In order to make a meaningful cat-

egorization of the data within these brackets and to

avoid the potential complexities linked to creating

dynamic variables, we introduce the following nota-

tions that are used within the dictionaries to catego-

rize the OMC results,

 SET

 Set

 Subset

 Element

 Results

 Values

In this section, to explain these categories, we use

the parsed output of OMPython obtained using the

Test mode.

4.2.3 SET

A SET (note the capital letters) is used to group data

that belong to the first set of balanced curly brackets.

According to the needed semantics of the results, a

SET can contain Sets, Subsets, Elements, Values and

Results.

A SET can also be empty, denoted by {}. The

SETs are named with an increasing index starting

from 1 (one). This feature was planned to eliminate

the need for dynamic variable creation and having

duplicate Keys. The SET belongs within the diction-

ary called "result".

For example:

>>strtok("abcbdef","b")

{'SET1': {'Values': ['"a","c","def"']}}

The command strtok tokenizes the string

"abcbdef" at every occurrence of b and produces a

SET with values "a", "c", "def". Each value of

the SET is then usable in Python.

4.2.4 Set

A set is used to group all data within a SET that is

enclosed within a pair of balanced {}s. A Set can

contain only Values and Elements. A set can also be

empty, it can be depicted as {{}}, the outer brackets

compose the SET, the inner brackets are the Set

within the SET.

4.2.5 Subset

A Subset is a two-level deep set that is found within

a SET. A subset can contain multiple Sets within its

enclosure.

For example:

{SET1 {Subset1{Set1},{Set2},{Set3}}}

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 543
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

4.2.6 Element

Elements are the data which are grouped within a

pair of Parentheses (). As observed from the OMC

result strings, elements have an element name that

describes the data within them, so elements can be

grouped by their names.

In some cases such as when using the untyped

OpenModelica API calls, element structures do not

have a name, in these cases the data contained with-

in the parenthesis is parsed into outputs generated by

the typed API calls, such as set, values, etc. Also, in

some cases many elements have the same names, so

they are indexed by increasing numbers starting

from 1 (one). Elements have the special property of

having one or more Sets and Subsets within them.

However, they are still enclosed within the SET.

For example:

>>getClassAttributes(test.mymodel)

{'SET1': {'Elements': {'rec1':

{'Properties': {'Results': {'comment':

None, 'restriction': 'MODEL',

'startLine': 1, 'partial': False,

'name': '"mymodel"', 'encapsulated':

False, 'startColumn': 14, 'readonly':

'"writable"', 'endColumn': 69,

'file': '"<interactive>"', 'endLine': 1,

'final': False}}}}}}

In this example,the result contains a SET with an

Element named rec1 which has Properties which

are Results (see section 4.2.7) of the element.

4.2.7 Results

Data that is related by the assignment operator "=",

within the SETs are denoted as Results. These as-

signments cannot be assigned to their actual values

unless they are related by a Name = Value relation-

ship. So, they form the sub-dictionary called Results

within the Element (for example). These values can

then be related and stored using the key:value pair

relationship.

For example:

>>getClassAttributes(test.mymodel)

{'SET1':{'Elements':{'rec1':

{'Properties': {'Results':{'comment':

None, 'restriction': 'MODEL',

'startLine': 1, 'partial': False,

'name': '"mymodel"', 'encapsulated':

False, 'startColumn':14, 'readonly':

'"writable"', 'endColumn': 69, 'file':

'"<interactive>"', 'endLine': 1,

'final': False}}}}}}

4.2.8 Values

Data within any or all of SETs, Sets, Elements and

Subsets that are not assignments and separated by

commas are grouped together into a list called "Val-

ues". The Values list may also contain empty dic-

tionaries, due to Python's representation of a null

string "" as {} - an empty dictionary. Although a

null string is still a null value, sometimes it is possi-

ble to observe data grouped into Values to look like

Sets within the Values list.

For example:

>>getNthConnection(Modelica.Electrical.A

nalog.Examples.ChuaCircuit,2)

{'SET1': {'Set1': ['G.n', 'Nr.p', {}]}}

4.2.9 The Simulation results

The simulate() command produces output that has

no SET or Set data in it. Instead, for the sake of sim-

plicity, the result contains two dictionaries namely,

SimulationResults and SimulationOptions.

For example:

>>simulate(BouncingBall)

{'SimulationOptions': {'options': "''",

'storeInTemp': False, 'cflags': "''",

'simflags': "''", 'variableFilter':

"'.*'", 'noClean': False,

'outputFormat': "'mat'", 'method':

"'dassl'",'measureTime':False,

'stopTime':1.0, 'startTime': 0.0,

'numberOfIntervals': 500, 'tolerance':

1e-

06,'fileNamePrefix':"'BouncingBall'"},'S

imulationResults':{'timeCompile':4.75231

650258347,'timeBackend':0.01602630977192

6,

'messages':None,'timeFrontend':1.4200466

8806536,'timeSimulation':0.1197039958177

84,'timeTemplates':0.0230460728977474,'t

imeSimCode':0.0139967955849597,'timeTota

l':6.3452533928534,'resultFile':'"C:/Use

rs/ganan642/BouncingBall_res.mat"'}}

4.2.10 The Record types

Some commands produce result strings with Record

constructs, these data are categorized for making

dictionaries too. To keep the uniformity and simplic-

ity, the data of Record types are grouped into the

dictionary RecordResults.

For example:

>>checkSettings()

{'RecordResults': {'RTLIBS': '" -static-

libgcc -luuid -lole32 -lws2_32"', 'OMC_F

An OpenModelica Python Interface and its use in PySimulator

544 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

OUND': True, 'MODELICAUSERCFLAGS': None,

'C_COMPILER_RESPONDING': False, 'OPENMO

DELICAHOME': '"C:/OpenModelica1.8.1/"',

'CREATE_FILE_WORKS': False, 'SYSTEM_INFO

':None, 'CONFIGURE_CMDLINE': '"Manually

created Makefiles for OMDev',

'RecordName':

'OpenModelica.Scripting.CheckSettingsRes

ult','OMC_PATH':'"C:/OpenModelica1.8.1//

bin/omc.exe"','WORKING_DIRECTORY':'"C:/U

sers/ganan642"', 'REMOVE_FILE_WORKS':

True, 'OS':

'"Windows_NT"','OPENMODELICALIBRARY':'"C

:/OpenModelica1.8.1/lib/omlibrary"','C_C

OMPILER': '"gcc"'}}

5 OMPython Implementation

The implementation of the OMPython API relies on

the Client–Server architecture of CORBA to com-

municate to the OMC [2]. OMPython acts as the

client that requests the services of OMC and OMC

behaves like the server and replies to the Python

module using the OmniORB and OmniORBpy –

Object Request Brokers (ORBs) of CORBA as the

communication platform.

This section briefly describes how the API uses

CORBA and its other features to achieve its re-

quirements.

5.1 The OMC CORBA interface

The OpenModelica Complier – OMC can be in-

voked using two methods:

 Executed at the operating system level, like a

program.

 Invoked as a server from a client application us-

ing a CORBA client-server interface.

OMPython uses the second method to start OMC

since this allows the API to interactively query the

compiler/interpreter for its services.

5.2 OMC Client Server architecture

Figure 11 gives an overview of the OpenModelica

client server architecture. OMPython plays the role

of the client in this architecture. It sends queries and

receives replies from the OMC via the CORBA in-

terface. The messages and expressions from the

CORBA interface are processed in two groups. The

first group consists of the commands which are

evaluated by the Ceval module and the second

group contains the expressions that are handled by

the Interactive module.

Figure 11. Client-Server of OpenModelica with some

interactive tool interfaces

Messages in the CORBA interface are classified into

two groups. The first group consists of the user

commands or expressions; these are evaluated by the

Ceval module. The second group contains the decla-

ration of variables, classes, assignments, etc. The

client-server API calls are processed by the Inter-

active module.

5.3 Using OMC through CORBA

The OMC process can be invoked from CORBA by

executing the OMC executable file using special

parameters passed to it. The default location of the

OMC executable file is in the $OPENMODELICA-

HOME/bin directory. OMPython invokes OMC with

some special flags +d=interactiveCorba

+c=random_string which instructs OMC to start

and enable the interactive CORBA communication

and also use a timestamp to name the CORBA In-

teroperable Object Reference (IOR) file that will be

created. The timestamp is needed to differentiate the

different instances of OMC that have been started by

different client processes simultaneously.

The default location where the IOR file is created

is in the temp directory. Normally, when OMC is

started with the +d=interactiveCorba flag, it will

create a file named openmodelica.objid. On

Windows (for example), if the +c flag was given,

the file name is suffixed with the random string to

avoid name conflicts between the simultaneously

running OMC server processes. This file contains

the CORBA IOR.

5.4 Using the CORBA IOR file

The IOR file contains the CORBA object reference

in string format. The CORBA object is created by

reading the strings written inside the IOR file.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 545
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

6 Measurements

In this section, we present some performance meas-

urements for the OMPython API.

The measurements shown are based on the re-

sponse time of the Python interpreter/compiler that

performs the various functions of establishing the

CORBA communication, sending commands to the

OMC, receiving CORBA outputs, parsing the

CORBA outputs and finally displaying the results to

the user.

Figure 12 illustrates a simple script that simulates

a Modelica model and plots a variable using the Plot

generated by OpenModelica. It also shows the re-

ceived response times of each command that was

executed to perform the simulation. Table 1 and Ta-

ble 2 show the time statistics collected from five

unique runs of two simple scripts using the OMPy-

thon API. The time is measured in Seconds. Figure

13 and Figure 14 illustrate the overhead between the

average output and the unparsed output's response

times.

These measurements aim to give an idea about the

overhead of the OMPython API in addition to the

CORBA overhead that is needed for OMC commu-

nication.

Figure 12. Measuring response times of simulations

for the BouncingBall model.

Command Average re-
sponse time

(s)

Average un-
parsed re-

sponse time
(s)

load-

File("c:/Ope

nModeli-

ca1.8.1/mode

ls/BouncingB

all.mo")

0.09223065 0.0421344389

simu-

late(Bouncin

gBall)

2.60921512 1.8922307169

plot(h) 0.03251472 0.0183359414

Table 1. Response time comparisons for loading,

simulating and plotting variables using OMPython.

Figure 13. Measuring response time for Simulations in

OMPython

Command Average re-
sponse time

(s)

Average un-
parsed re-

sponse time (s)

getVersion() 0.0680588293 0.0590995445

loadMod-

el(Modelica)
5.971103887 4.4708573210

getElemen-

tsInfo(Modeli

ca.Electrical

.Analog.Basic

.Resistor)

0.0264064349 0.0190346404

getClass-

Names()
0.3907942649 0.2707218157

getTempDirec-

toryPath()
0.0244359882 0.0193691690

getSettings() 0.0327650196 0.0234227783

Table 2. Measuring response times of some

OpenModelica commands in OMPython

An OpenModelica Python Interface and its use in PySimulator

546 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

Figure 14. Measuring response times of some

OpenModelica commands in OMPython

7 Related Work

Some Simulation packages are available for Python

but these packages do not implement an equation-

based solving system. Also, they do not provide a

Modelica based modeling and simulation environ-

ment, but rather present their custom model types.

 PySCeS – The Python Simulator for Cellular

Systems. It uses the model description language

to define its models. Supports solvers like LSO-

DA, sections for non-linear root finding algo-

rithms, Metabolic control analysis, Mat-

plotlib/Gnuplot plotting interfaces, etc. It is re-

leased under a new BSD style license and is open

source software [4].

 SimPy – Simulation in Python, is an object-

oriented, process-based discrete-event simulation

language for Python. It is released under the

GNU Lesser GPL (LGPL) license version 2.1. It

features data collection capabilities, GUI and

plotting packages. It provides the modeler with

the active and passive components of a simula-

tion model and monitor variables for gathering

statistics [5]

 JModelica.org [12], MWORKS [13], and Amesim

[14] are other Modelica tools providing a Python

scripting API.

8 Conclusion

OMPython is a versatile Python library for

OpenModelica that can be used by engineers, scien-

tists, researchers and interested architects to explore

and develop Modelica based modeling and simula-

tion efforts. It is free, open source and is distributed

with the OpenModelica installation which gives the

user the potential to use the full collection of Model-

ica libraries that can assist in performing complex

simulations and analyses.

The OMPython API places minimal require-

ments on the user while offering an industry viable

standard modeling and simulation environment.
We suggest some future work that can be done to

enrich the usage of the OMPython API. The API can

be expanded to provide access to the GUI based fea-

tures of other OpenModelica tools such as OMEdit.

User interfaces can be easily built on top of OMPy-

thon to implement additional graphic features. Fur-

ther interesting efforts can be made if the OpenMod-

elica API can be designed to expose its commands

as interface definitions in the

omc_communication.idl file.

9 Acknowledgments

This work has been supported by Serc, by the Swe-

dish Strategic Research Foundation in the EDOp and

HIPo projects and Vinnova in the RTSIM and

ITEA2 OPENPROD projects. The Open Source

Modelica Consortium supports the OpenModelica

work.

References

[1] Anand Kalaiarasi Ganeson. Design and Im-

plementation of a User Friendly OpenModeli-

ca – Python interface, Master thesis LIU-

IDA/LITH-EX-A12/037SE, Linköping Uni-

versity, Sweden, 2012

[2] Open Source Modelica Consortium.

OpenModelica System Documentation Version

1.8.1, April 2012.

http://www.openmodelica.org

[3] Modelica Association. The Modelica Lan-

guage Specification Version 3.2, March 24th

2010. http://www.modelica.org. Modelica As-

sociation. Modelica Standard Library 3.1.

Aug. 2009. http://www.modelica.org.

[4] PySCeS.http://pysces.sourceforge.net/index.ht

ml

[5] SimPy. http://simpy.sourceforge.net/

[6] Mark Lutz. Programming Python. ISBN

9781449302856, O'Reilly, 2011.

[7] omniORB 4.1.6 and omniORBpy 3.6. The

omni-ORB version 4.1 User's guide, the om-

niORBpy version 3 User's guide.

[8] http://omniorb.sourceforge.net/

[9] Andreas Pfeiffer, M. Hellerer, S. Hartweg,

Martin Otter, and M. Reiner. PySimulator – A

Simulation and Analysis Environment in Py-

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 547
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

http://www.openmodelica.org/
http://www.modelica.org/
http://www.modelica.org/
http://pysces.sourceforge.net/index.html
http://pysces.sourceforge.net/index.html
http://simpy.sourceforge.net/
http://omniorb.sourceforge.net/

thon with Plugin Infrastructure. Submitted to

the 9th International Modelica Conference,

Munich, Germany, September. 2012.

[10] Dassault Systèmes AB:

la, www.dymola.com.

[11] MODELISAR consortium: Functional Mock-

up Interface for Model Exchange, Version 1.0,

2010. www.functional-mockup-interface.org

[12] JModelica.org. http://JModelica.org. Accessed

May 20, 2012.

[13] MWORKS. http://en.tongyuan.cc/. Accessed

May 20, 2012.

[14] LMS Inc. Amesim tool suite.

http://www.lmsintl.com/imagine-amesim-

suite. Accessed May 20, 2012.

An OpenModelica Python Interface and its use in PySimulator

548 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

http://www.dymola.com/#_blank
http://www.functional-mockup-interface.org/#_blank
http://jmodelica.org/
http://en.tongyuan.cc/
http://www.lmsintl.com/imagine-amesim-suite
http://www.lmsintl.com/imagine-amesim-suite

	OLE_LINK1
	OLE_LINK2

