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Abstract 

In more electric aircrafts (MEA) the electric pow-

er network is important for the reliability. To prevent 

severe faults it is the key issue to identify the faults 

in the early stage before a complete failure happens. 

In this paper an early stage fault detection method 

using wavelet multi-resolution analysis (MRA) for a 

regulated buck DC-DC converter is studied. Specifi-

cally, the electrolyte input capacitor is diagnosed. 

The study was carried out using simulation with 

Modelica / Dymola. The fault features that were ex-

tracted from different levels of wavelet decomposi-

tion provided clear information for both fast and 

slow occurring faults. This method showed signifi-

cant advantages compared with filter techniques. It is 

concluded that wavelet transform is a suitable tool 

for early stage fault detection of the power electron-

ics in MEA. In addition, the simulation language 

Modelica provides a convenient possibility for the 

quick design of fault detection strategy. 

Keywords: power electronics; DC-DC converter; 

fault detection; wavelet; Modelica; Dymola 

1 Introduction 

1.1 Motivation 

The concept of More Electric Aircraft (MEA) is 

attracting increasing interest in the aircraft industry 

not only because of its potential in energy optimiza-

tion, but also due to its significant advantages con-

cerning weight, maintenance requirements, liability 

and passenger comfort [1]. For this, the electrical 

power distribution network is playing a more im-

portant role and facing increasing challenges in the 

prognosis and accurate localization of faulty units in 

an even more complex power network. In order to 

obtain maximum flight reliability and minimum 

maintenance efforts, advanced failure analysis tech-

nologies shall be applied to ensure correct and quick 

fault detection and isolation. It is well known that an 

output voltage regulated DC/DC power converter 

supplying constant power loads could de-stabilize 

the network stability due to the degraded perfor-

mance of its input filter. The sensitivity study of in-

put filter parameters concerning the network stability 

addressed in [2] reveals that the observation of de-

graded degree of the capacitor in the input filter can 

significantly increase the network reliability.  

1.2 State of the art 

Reviewing the considerable development of fault 

diagnosis techniques and many successful applica-

tions attached to them in the last time [3] [4] [5], 

power systems keep a challenge for fault detection. 

For overcoming this challenge intelligent methods 

like artificial neural networks have shown their pos-

sibilities in this field [6]. Besides, the analytical 

model based technology is also obtaining more atten-

tion [7] [8] [9]. 

Signal-based methods, e.g. Fourier transform and 

wavelet transform, also provide other possibilities to 

perform the fault detection and isolation. With the 

rash development of the new mathematical tool, 

wavelet transform [10], a great amount of studies 

have been done in different fields for fault detection. 

Some attempts have also been made in power elec-

tronics for fault detection [11] [12]. The implementa-

tion of wavelet transform for the post processing of 

Modelica simulation data has been seen, for exam-

ple, in a study of vehicle steering, where wavelet 

transform was carried out in the software Matlab for 

calculating power spectra [13].  
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1.3 Main contributions 

Modelica was developed as a free, object-oriented 

and equation-based modeling language. It has signif-

icant benefits such as easy reusability of models and 

multi-domain modeling capability. In combination 

with the simulation environment Dymola, a conven-

ient platform is provided to the complete model-

based design and the integration of MEA systems 

[14]. In contrast to the excellent performance in 

modeling and simulation, Modelica only supports 

limited signal analysis features [15], which are actu-

ally crucial for the fault analysis and virtual testing 

activities in the verification and validation phase of 

the system development.  

This work focuses on the fast design of a fault de-

tection strategy of on board power supply units in 

MEA with wavelet transform using Modelica simu-

lation. To realize this, a wavelet library for Modelica 

is being developed. Multi-Resolution Analysis 

(MRA) of wavelet technology is applied to detect the 

failure of electrolyte capacitors in a very early stage.  

In addition, the design process using Modelica 

simulation shows high flexibility and efficiency. It is 

possible to identify the most important failure fea-

tures and helps to design a effective fault detection 

strategy within only a short time. 

2 Wavelet transform 

2.1 Definition 

Wavelet transform could be considered as a fur-

ther development of Fourier transform, or more pre-

cisely, of short time Fourier transform (STFT) [16]. 

Using STFT, people try to localize the signal chang-

ing with time by selecting suitable time window. 

This transformation, however, is limited in time-

frequency resolution capability due to the uncertainty 

principle. Wavelet transform overcomes this prob-

lem. This transform is defined as [10]: 

           
 

    
   

   

 
 

          
      

 

  
. (1) 

It is described as the wavelet transform of the 

square-integrable function, f, using wavelet function, 

ψ, at dilation (or scale), a, and position (or transla-

tion), b. The bar above function, ψ, stands for conju-

gation. For the given a and b, the transform result is 

a single real number, a wavelet coefficient. 

Obviously wavelet transform is the integral of the 

multiplication of the signal, f, with a wavelet func-

tion, ψ. It has the same form as the STFT. However, 

not like STFT, where only sine and cosine functions 

are used for the transformation, wavelet transform 

uses different wavelet functions, which can be se-

lected according to the specific problems from a 

principally unlimited set. Nevertheless, the wavelet 

function must fulfill some conditions; namely, it 

must be an orthonormal function. The precise math-

ematical description of orthonormality is easily 

found in almost every book about wavelet transform, 

e.g. [10], and is not repeated here. 

Parameter, a, defines the width and height of the 

wavelet function, ψ. A smaller scale, a, makes ψ nar-

rower; thus the wavelet represents fast changes and 

the transform focuses on the high frequency compo-

nents of the signal. Parameter, b, shifts the wavelet 

function along the time axis, so that the transform 

represents different locations of the signal. Using 

different values of scale, a, and position, b, it is able 

to observe the signal at different position and in dif-

ferent frequency range with only one transformation. 

Thanks to these special properties, wavelet transform 

is especially suitable for analyzing changing pro-

cesses. 

Two forms of wavelet transform are available. 

They are continuous wavelet transform (CWT) and 

discrete wavelet transform (DWT). In CWT both 

scale and position parameters are continuous real 

values. CWT expresses the signal changes in contin-

uous details. It is more suitable for visual examina-

tion. In this work only DWT is used, which will be 

described in more detail in the next section. 

2.2 Discrete wavelet transform 

In DWT only discrete values of the scale and lo-

cation parameters are used. The values are selected 

in a discrete form, namely 

       
 

           , (2) 

where         and      . The transform re-

sults, i.e. the wavelet coefficients, are therefore also 

discrete.  

In the numeric calculation of DWT, an extra scal-

ing function, in addition to the wavelet function, is 

used to carry out a complete and efficient DWT. The 

scaling function represents the low frequency com-

ponents of the signal. It is orthogonal to its own dis-

crete translations and to all wavelet functions. The 

wavelet and the scaling functions with the discrete 

scaling and translation parameters build a complete 

orthogonal basis of the Hilbert space. The DWT is 

thus another representation of the time signal.  

As an example, Figure 1 shows the form of the 

third order Daubechies scaling and wavelet functions 

and their Fourier transforms [17]. 
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Figure 1: The third order Daubechies scaling and wavelet func-

tions (a) and their Fourier transforms (b) 

 

 

From the Fourier transforms it can be seen that 

the scaling function covers lower frequency range 

while the wavelet function stretches in a higher fre-

quency range. From this point of view, DWT is actu-

ally the division of the time signal into different fre-

quency bands. Thus, it is straightforward to under-

stand that the calculation of DWT is realized using 

filter banks. In inverse DWT the calculation is simi-

lar. This process is illustrated in Figure 2. 

 

 
 Figure 2: DWT and inverse DWT calculation using filter banks 

 

DWT transforms the original sequence in two 

new series:  

(1) the approximation coefficients, cA(k), represent-

ing the low frequency components, obtained us-

ing the low pass filter for decomposition, hd0, 

and  

(2) the detail coefficients, cD(k), representing the 

high frequency components, obtained using the 

high pass filter for decomposition, hd1.  

The symbol ↓2 means down sampling. The opera-

tion is to delete one from every two adjacent coeffi-

cients, in order to remove the redundant information. 

The inverse DWT carries out the reversed operation. 

The operator, ↑2, expands a coefficient series by in-

serting a zero between every two adjacent elements. 

After that the two series pass through the filter bank, 

and added together to get the original signal. 

2.3 Multi-resolution analysis 

Considering the DWT process shown in Figure 2, 

sequence, cA(k), which represents the low frequency 

components can be further divided into a lower fre-

quency part and a higher frequency part inside the 

frequency range of cA(k). This process is repeated 

and a series of coefficient sequences representing 

different frequency ranges is obtained, as shown in 

Figure 3: 

 
Figure 3: Multi-resolution analysis using DWT 

 

This is the wavelet multi-resolution analysis 

(MRA). The output of this operation, cD1, cD2, …, 

cDn and cAn, are different levels of DWT coeffi-

cients, representing the signal components from 

higher to lower frequencies. Here the original signal 

is treated as the lowest level of approximation coef-

ficients. This analysis provides a convenient tool to 

observe different frequency components of the signal 

depending on time. 

2.4 Wavelet analysis for fault detection 

Wavelet transform is a powerful tool in signal 

processing for the detection of changing events. This 

feature is suitable for fault detection since a fault in a 

system can be treated as a deviation compared to the 

normal state.  

When a fault occurs, specific changes will appear 

in the sensor signal. Usually, it is known that the 

fault signal is located in a certain frequency range, 

but the exact frequency is often unknown or not con-

stant. This problem can be handled with wavelet 

MRA. For that, the signal containing fault infor-

mation is firstly decomposed in several levels. And 

in one or more levels, where the fault signal frequen-

cy is located, faults features will be observed.  

3 Wavelet fault detection in a MEA 

power network system 

Based on the properties of wavelet transform in 

signal processing, this new mathematic tool is used 

for fault detection in a MEA power network system 

in this study. Specifically, the MRA is used here to 

detect the capacitance drop of the input capacitor in a 

DC-DC buck converter for the early stage failure. 

3.1 The problem 

The buck converter is described with the diagram 

shown in Figure 4. 
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Figure 4: Diagram of the Buck converter under study 

 

The converter operates in constant load power 

mode by keeping a constant output voltage, which is 

adjusted through the duty cycle of the pulse width 

modulation (PWM) switching signal, which operates 

with a constant frequency. Based on the converter 

property the system is sensible to the value changes 

of the components on the input side, where the input 

capacitor, Cin, is especially critical because it is usu-

ally an electrolyte type, which has significantly low-

er feasibility and shorter lift time compared with oth-

er components. Base on this reason, the early fault 

detection is focused on Cin. 

Four parameters of the circuit can be convenient-

ly measured by voltage and current sensors. They 

are, referring to Figure 4, Uout, Iout, Iin and Uin, 

ordered from higher to lower ease of availability. 

Since the load is pure resistive constant load, the 

output current signal will contain the same infor-

mation as the output voltage. And Uout will be used 

any way for the controller as feedback, the equip-

ment of a sensor for output current is therefore not 

necessary, at the least for fault detection. 

Since a stable output voltage is the control objec-

tive of the circuit, the influence of Cin would be 

compensated by the controller very quickly. As a 

consequence only very few fault information would 

be propagated to the output side. The fault detection 

using Uout is therefore not feasible.  

The input voltage is not a good signal for fault 

detection, too, since it actually measures the input 

power supply voltage, which is normally a voltage 

source with very low impedance and thus hardly be 

influenced by Cin.  

The input current is the last possibility; and it is 

actually also a suitable signal for fault detection. The 

reason is, for example, if its capacitance drops, it 

means the energy capacity of the input circuit is re-

duced. In order to keep a constant energy flow to the 

load, which is regulated by the controller, Cin would 

have to be charged and discharged more deeply. This 

will be reflected in the input current with larger fluc-

tuation. This estimation will be showed later in the 

result section. 

If an electrolyte capacitor approaches it life end, 

its capacity would reduce slowly within a certain 

time. However, sharp reduction or changing of ca-

pacitance might also occur. For fault detection, espe-

cially for early stage fault diagnosis, both stepping 

type and slow changing of capacitor fault should be 

considered. 

3.2 Extraction of fault information 

The first step is the extraction of the fault infor-

mation from the sensor signals. Supposing the meas-

ured signal is 

              , (3) 

where x(k) is the signal in normal operation state, 

and g(k) the additional signal in fault condition.  

Using wavelet technology, the sensor signal f(k) 

is decomposed with MRA using wavelet function, ψ, 

to obtain wavelet coefficients in n levels: 

                    
 
    , 

             
               

 
   , 

(4) 

where Di{.} represents the detail coefficients, and 

Ai{.} stands for approximation coefficients. The term 

Di{.} with smaller index, i, represents higher fre-

quency components, namely faster changing signals. 

The signal, x, in the normal operation condition is 

composed of the average value of the battery current, 

which changes very slow, and the ripples caused by 

the PWM controlling, which have a constant fre-

quency defined by the controller. The slower com-

ponents are transformed to the approximation coeffi-

cients, An{x}; and the components with PWM fre-

quency, which are higher frequency components, is 

transformed to the very low level of Di{x}. 

On the other hand, the fault signal, i.e. the infor-

mation of the reduction of Cin, is reflected by the 

fluctuation of the input current. As it is known that 

the fluctuation frequency is actually the PWM fre-

quency, most of the fault information is contained in 

the PWM components, which means the lower levels 

of detail coefficients, Di{g}. Depending on the fault 

occurrence rate, complex fluctuation could take 

place. This information will be carried by the PWM 

frequency, too, but its own frequency components 

are visible in other levels of Di{g}.  

In any circumstance few information will be pre-

sent in very low frequency range, i.e. in An{g}. 

Therefore, we can extract the fault information from 

the input current signal simply by isolating some 

levels of detail coefficients, Di{f}. Of course, the 

PWM information will also be involved. It has to be 

removed before the faults can be identified. Since 

this frequency is known and it always has a very 

high value, these components can be easily sup-

pressed with low pass filter or band stop filter. 
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R
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3.3 Fault identification 

After all irrelevant information is excluded the fi-

nal fault information is represented with a single val-

ue, changing according to the failure rate. The fault 

can be simply identified by comparing it with a 

known threshold.  

4 Design of a fault detection strategy 

using Modelica 

Because of the aforementioned superior proper-

ties, Modelica simulation and wavelet transform 

were selected for the quick design of a fault detec-

tion strategy for the power system in MEA. Since 

wavelet transform is not available in the standard 

Modelica libraries, a solution have to be found. A 

seemingly direct solution would be the use of a se-

cond software tool, which provides wavelet analysis 

capacity, such as Matlab from MathWorks. Some 

practical reasons were faced, however. Firstly, the 

use of such commercial software requires expensive 

licenses. Secondly, a single program both for simula-

tion and data analysis is very desirable during the 

work in order to have an integrated working process 

and to avoid interfacing between two programs. It is 

therefore more favourable to have the wavelet analy-

sis  inside Modelica. In addition, this brings further 

advantages in that the library can be a common tool 

of Modelica, so that higher work efficiency will be 

achieved in a long term. 

4.1 Model of the power supply 

The buck converter shown in Figure 4 is realized 

with a Dymola model in Figure 5.  

 
Figure 5: The Dymola model of the Buck converter for MEA 

 

The voltage controller is a proportional-integral 

regulator. The output voltage is set as 4.3 V. The 

PWM frequency is defined with the trapezoidal 

source as 50 kHz. The component fault is simulated 

by reducing the value of the input capacitor, Cin, 

with a ramp source. By setting the ramp, different 

changing rate of the component value can be simu-

lated. The input current is measured by a current sen-

sor, which is explicitly put in the model only for 

clarity, since the current values could actually be 

read out directly from the corresponding compo-

nents, e.g. Rin or Lin. Other parameters are listed in 

Table 1 

 

Table 1: Parameters of the buck converter 

Parameter Description  Value 

E Voltage source 54 V 

Uref Reference output voltage  4.3 V 

Lout Output inductance  29 μH 

Cout Output capacitance  40 μF 

Rload Load resistance 1.568 Ω 

Lin Input filter inductance  10 μH 

Cin Input filter capacitance  10 μF 

Rin Input resistance 0.025 Ω 

Kp Propotional controller gain  0.06 

Ki Integral controller gain  4.9 

4.2 Wavelet transform in Modelica 

The structure of the wavelet toolbox developed 

for Modelica is shown in Figure 6. At the moment of 

this report the wavelet library is under development 

within the frame of Clean-Sky project organized by 

European Union. It is expected to be a general 

Modelica library with wavelet transform and some 

related functionality for different signal processing 

purposes. This library is used for post processing of 

the simulation result data and cannot be embedded 

into simulation models. So far the core library func-

tions have been realized and wavelet DWT and 

MRA can be implemented for the reported work. 

 

Figure 6: Structure of the intended Modelica wavelet library (the 

functions with dark background will be designed depending on 

the work process) 
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4.3 Process for simulation and fault detection 

As mentioned in the problem description (section 

3.1) the input current signal is used for fault detec-

tion. At first the model will be simulated with differ-

ent reduction rates of the Cin capacitance. The re-

duction rates were selected between 1 and 100 ms 

with a capacitance drop from 10 to 8 μF, correspond-

ing to 20% capacitance loss. With this fault level the 

system can still operate normally. However, a 20% 

reduction indicates a high possibility of a complete 

failure of the capacitor in the near future. The reduc-

tion is applied at 0.1 s after the startup of the simula-

tion so that the system can achieve a stable state be-

fore the faults could occur. 

After simulation, the data segment containing the 

fault event will be read out from the simulation result 

data file. It is converted to equidistant time series 

with a sampling rate of 200 kHz. Equidistant sam-

pling is the requirement of wavelet transform and 

most other signal processing methods. The fault de-

tection process is illustrated in Figure 7. 

 
Figure 7: Process for simulation and fault detection using wave-

let transform 

 

To simulate the real world, a white noise signal 

with normal distribution is added on the input current 

signal. After that, MRA is applied on the data. The 

wavelet function used here was the third order 

Daubechies function shown in Figure 1. The detail 

coefficients in the DWT result are extracted and their 

absolute values are calculated since only the magni-

tude of the DWT coefficients contains fault infor-

mation. To remove the high frequency PWM com-

ponent, second order Butterworth low pass filter is 

used. The filter cut off frequency is set as 0.5 kHz, 

much lower than that of the PWM frequency, in or-

der to suppress a large part of the noise signal, too. 

After this step, different fault features can be visually 

identified and suitable fault detection methods can be 

established. 

4.4 Results 

The tests with different parameters were carried 

out. Figure 8 and Figure 9 give two examples with 

slow and fast changing faults, respectively. Since all 

fault features mainly present in the first three levels 

of the wavelet decomposition, only these coefficients 

are shown in the figures. 

It was noticed that the fault features differed sig-

nificantly between fast and slow changing rates. For 

the changing rates faster than 5 ms, a pulse feature 

appeared in almost every level of the wavelet detail 

coefficients. This is well seen in Figure 8, where 

20% capacitance drop took place within 1 ms. In the 

first MRA level the feature magnitude changed from 

55 to 70 mA with the fault. In the other two higher 

levels the fault event was extra present with pulses. 

The magnitude of the pulses increased with the 

changing rate. The pulses appeared in other higher 

decomposition level, too. However, in level three it 

was significantly higher than those in other levels. 

For the fault with 1 ms dropping time, as shown in 

Figure 8, the pulse peak reached almost 100 mA in 

level 3. The simulation showed that for the dropping 

time up to 5 ms, the peak height reduced linearly to 

about 20 mA.  

For the changing rates slower than 5 ms, the fault 

features were only significant in the lowest level of 

the wavelet MRA coefficients. Figure 9 shows an 

example, where the 20% capacitance drop took 100 

ms time. Now only the first wavelet decomposition 

level contained a fault feature: the feature magnitude 

changed from about 55 to 70 mA linearly with the 

reduction of the capacitance. This was the same as 

the level 1 feature in fast changing faults. For even 

lower changing rates this linear relationship was al-

ways present. Not like in the case of fast changing 

fault, no significant features were observed in other 

decomposition levels. 

Based on the simulation study, the following fault 

detection strategy can be defined for early stage fault 

detection of the input capacitor, Cin: 

 

(1) In wavelet decomposition level one, if the fea-

ture magnitude exceeds 70 mA, a capacitance 

reduction of 20% of Cin is detected.  

 

(2) In wavelet decomposition level three, if the 

pulse value exceeds 20 mA, the event implies a 

fast drop of the Cin capacitance. The pulse peak 

value could be used to estimate the capacitance 

changing rate. 
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Figure 8: Signals in the detection of a capacitance drop fault 

within 1 ms using wavelet transform. (a) Cin capacitance (μF); 

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features 

contained in detail wavelet coefficients of level 3 to level 1 

(mA). 

 

 

 

 

 

 

 

 
Figure 9: Signals in the detection of a capacitance drop fault 

within 100 ms using wavelet transform. (a) Cin capacitance (μF); 

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features 

contained in detail wavelet coefficients of level 3 to level 1 

(mA). 
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4.5 Comparison with filter technique 

The wavelet fault detection method was com-

pared with the traditional filter technique, which was 

processed according to the procedure as shown in 

Figure 10.  

 

 
Figure 10: Process for simulation and fault detection using filter 

technique 

 

The process is similar to that using wavelet trans-

form. The differences are:  

(1) Instead of wavelet decomposition for removing 

the low frequency normal operation signal, a se-

cond order Butterworth high pass filter was 

used. Its cut off frequency was optimized at fc = 

10 kHz to keep as much as possible fault infor-

mation in high frequency range. 

(2) The output of the high pass filter is a single one 

dimensional time vector, not as in the wavelet 

decomposition, where multiple vectors are ob-

tained. 

 

The fault features obtained using both methods 

for different fault occurrence rates are compared in 

Figure 11. It shows significant advantages of the 

wavelet method over the traditional filter method.  

For the fast changing faults, the faults were ex-

pressed with both linear change of the feature magni-

tude and much sharper pulses in the wavelet method. 

In Figure 11a the pulse peak in the wavelet method 

reached about 80 mA from the base line, while the 

filter method only showed a peak value of about 10 

mA. 

For the slow changing faults, shown in Figure 11a 

and b, although no significant peaks were observed 

in the higher decomposition levels using wavelet 

transform, the features in the first level were still 

clearer than that obtained with the filter method. In 

the wavelet method, the features showed a difference 

from 55 to 72.5 mA with a relative change of about 

32%, while the filter method gave a difference from 

34 to 42.5 mA with a difference of only about 25%. 

 

 

 

 

Figure 11: Comparison of the fault features between wavelet 

method and filter method for (a) 1 ms, (b) 10 ms and (c) 100 ms 

fault occurrence rate (black solid line --- level 1 wavelet; blue 

dashed line --- level 3 wavelet; red solid line --- filter method) 

5 Conclusion and discussion 

This work described a method for early fault de-

tection of important electric components in power 

supply systems for more electric aircraft (MEA) us-

ing wavelet transform. The special properties of 

wavelet transform suit this method well for changing 

signal analysis. The simulation study using Modelica 

under the environment Dymola illustrated its superi-

or feasibility for the detection of fast changing faults, 

which was significantly better than the traditional 

filter technique. For the slow changing faults, the 

wavelet method also gave a significant feature and 

provided clearer information than the filter tech-

nique. Based on these advantages, the wavelet fault 

detection method is expected to achieve satisfied 

detection of early faults. 

In this study, a specific wavelet library for 

Modelica is being developed, which possesses the 

basic functionality of wavelet analysis, including 

wavelet transform and inverse transform, wavelet 

decomposition and reconstruction for multi-

resolution analysis, and other related functions. The 

work proved the feasibility of the implementation of 

wavelet analysis in Modelica. 

More work is being done in this topic, including 

further development of the Modelica wavelet library 

and experimental study of the fault detection with a 
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real buck inverter. For a real system, detailed optimi-

zation of the fault detection strategy has to be carried 

out, such as trying other wavelet functions, observ-

ing more changing rates, studying the detection with 

expanded fault ranges, and considering the faults in 

more electrical parts. 
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