
Modelica3D -
Platform Independent Simulation Visualization

Christoph Höger1, Alexandra Mehlhase1, Christoph Nytsch-Geusen2, Karsten Isakovic3, and Rick
Kubiak3

1Technische Universität Berlin
2Universität der Künste Berlin

3Fraunhofer FIRST

Abstract

Modelica3D is a platform-independent, free Model-
ica library for 3D visualization. Its implementation
is based on a message-passing architecture. Through
its loosely-coupled architecture, Modelica3D can be
combined with different rendering-tools. It is also
highly extensible and scalable.

Keywords: 3D Graphics, Library, Platform Inde-
pendence, Free Software, Structural Dynamics, Loose
Coupling, Message Passing

1 Introduction

Simulation results in Modelica are usually visualized
using two-dimensional plots. System states are shown
as functions over time or each other. While this is of
course a very natural way to approach the presenta-
tion of simulation results, it is not sufficient in some
aspects:

In Modelica, simulation-models are composed of
reusable software fragments. Thus an interesting
quantity might not be present directly, but in form of a
relation between multiple system states (e.g. distances
between different objects). The solution is to either
change the model, post-process the simulation results,
or to switch to a more complex visualization method.

Additionally, a simulation might be used to drive
interactive real-time simulators (e.g. for training pur-
poses) or to present certain facts to a non-simulation
audience. In both cases the usage of 3D graphics
might lower the barrier significantly for team mem-
bers, which are not as familiar with the simulation as
the responsible engineer. Therefore it is important that
the visualization aspects can be controlled from within
the simulation environment. On the other hand visual-

ization experts (and expert-tools) are necessary to cre-
ate realistic and usable 3D-graphics. The Modelica3D
library aims to provide a solution for these require-
ments.

1.1 Contribution

In this paper we will demonstrate how a visualization
library (called Modelica3D) can be implemented by
using only standard Modelica features. The library it-
self is available under a free software license. We will
show how a tight coupling between the library and
the rendering-tool can be avoided. This loose cou-
pling allows the visualization of structural dynamic
systems. Additionally, we show how the underlying
message-exchange API makes the Modelica3D API
both flexible and extensible. Finally, an example is
given, demonstrating the scalability of Modelica3D to
industrial models.

Finally, the method proposed here is not limited to
3D-graphics. The same means could be used to control
e.g. sound output or any other simulation feedback. In
that way, Modelica3D demonstrates how simulations
can control effects beyond their simulation environ-
ment.

The rest of the paper is organized as follows: First,
we will discuss the state-of-the-art of 3D visualiza-
tion in the Modelica ecosystem. Then, a technical
overview over Modelica3D’s architecture is presented.
This includes a discussion of the overall design as
well as solutions to overcome some Modelica-specific
limitations. Second, we will show how Modelica3D
can be used to simulate an existing library (Model-
ica.MultiBody) to achieve tool-independent state-of-
the-art visualization. As a second use-case a recently
developed technique for finite-state structurally dy-
namic systems is extended with Modelica3D visual-

DOI Proceedings of the 9th International Modelica Conference 485
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

ization. Finally, we will evaluate the library by imple-
menting a large-scale industrial model visualization.

2 State of the art

During the last 10 years different approaches were
tested to integrate scene descriptions of 3D bodies in
the Modelica language or to support 3D visualizations
by the Modelica simulation tools.

The first fundamental analysis and conceptual work
in this field was done by Engelson [3]. Two alternative
ways were discussed for the integration of 3D object
information in Modelica: First, the definition of a ba-
sic set of “graphical” Modelica classes, which make a
representation of primitive 3D objects (e.g. triangle,
sphere) and position operations with this objects (e.g.
translation, rotation) in user defined physical models
possible. Second, the direct integration of the 3D ob-
ject information as “graphical annotations” into the
physical models self.

Another approach of a annotation concept for the
embedding of 3D geometries in Modelica was devel-
oped from [5], where specialized 3D annotations for
model classes and objects and a standardized descrip-
tion of 3D geometries and the related body topolo-
gies (in this case the X3D standard) were combined.
Within the tool specific approaches, individual ways
for the 3D information integration were done by the
software developers. The greatest disadvantage con-
sists in the incompatibility of the 3D models, caused
by the use of vendor specific 3D information.

The simulation tool SimulationX from ITI supports
both for his own Modelica libraries and also for user
written Modelica libraries the visualization and anima-
tion of 3D objects. With the help of an 3D editor tool,
the 3D information is stored in the physical Modelica
models and also in related non standardized annota-
tions. The 3D editor supports the definition of sim-
ple and complex bodies, which are constructed by the
combination of standard 3D primitives and also spe-
cialized objects such as gears and spiral springs.

The simulation tool Dymola from Dassault Sys-
temes supports for selected Modelica libraries the vi-
sualization and animation of 3D-objects, mainly for
the MultiBody-Library. For this, specialized visualiza-
tion classes for 3D primitives were introduced. Fur-
ther, complex 3D geometries, based on external def-
initions of 3D-shapes via dxf-files are utilized. The
MultiBody package of the Modelica Standard Library
uses data structures defined in Modelica.Services to
calculate a complete continuous time model of the 3D

visualization geometry. This approach does not allow
for effect-events (e.g. deformations, material changes).

The visualization framework SimVis for 3D mod-
elling and simulation with Modelica was developed by
the German DLR [2]. On the modelling side, a new
developed ExternalDevices-library represents the base
for the 3D visualization and interactivity. For the sim-
ulation experiments three different types of input de-
vices (keyboard, joystick, 3D space mouse) supports
the direct 3D interaction by the user. The technical
base on SimVis is OPENGL and OPENSceneGraph.
Different use cases were analysed within SimVis such
as flexible body simulation, energy flow simulation,
Head-Up-Display simulations, hybrid cars and robot
simulation.

3 Modelica3D

In this section we discuss the architecture of Model-
ica3D and the design decisions that lead it. As Mod-
elica3D is a purely non-physical library, there are no
modeling concerns (e.g. reusable and understandable
components) that need to be addressed. Instead, Mod-
elica3D focuses solely on effects outside of the simula-
tion. Thus, we could focus on general software design
principles and the goals motivated earlier.

3.1 Design Decisions

First of all, Modelica3D should be platform indepen-
dent: Only methods that are part of the Modelica Spec-
ification [1] should be used. This rules out the devel-
opment in form of an extension to an existing platform
and a solution based on vendor-specfic annotations.
Any tool that follows the specification should be able
to use Modelica3D directly. During the development
we used OpenModelica [4].

Model C-API

<<interface>>
Modelica3DBack-end

Figure 1: Modelica3D architecture

Instead, Modelica3D must be shippable as a library.

Modelica3D - Platform Independent Simulation Visualization

486 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

This library must contain a layer of Modelica-Code,
which allows access to the 3D API from any model.
On the other hand, extensions which cannot be ex-
pressed in Modelica need to be implemented in a lan-
guage that is supported through Modelica’s external
function interface. Since only C and Fortran are cur-
rently specified, C is a natural choice, being the “lin-
gua franca” of platform independent development.

The second important requirement was loose cou-
pling between front-end (the simulated model) and
back-end (the rendering-tool). While with the choice
of C as implementation language, several options for
accessing rendering-tools exist, directly linking the
back-end would cause several drawbacks:

• Only few back-ends can be used as a library.
Even if they do (e.g. OpenSceneGraph), the
viewer usually requires a lot of additional fea-
tures (user interface, inputs, file management).
Providing those features to a Modelica model in a
platform independent implementation would re-
quire lots of additional work for each back-end
and thus only allow very few implementations.

• A fixed C API would not only put an additional
burden on developers who want to extend the li-
brary. It would also of hinder the maintenance,
since every back-end would effectively require
it’s own C-library (including it’s own bugs). Ide-
ally the parts written in C should be as small as
possible instead, leaving the lion’s share of work
to Modelica and back-end experts.

• Linking works only locally. In times of dis-
tributed computing it seems unreasonable to de-
mand simulations running on the same physical
machine as visualization.

So instead of directly linking 3D API functions into
a Modelica model, we chose to use interprocess com-
munication (IPC). That way, front-end as well as back-
end can run as dedicated processes while sending re-
spectively receiving messages. Any back-end needs to
implement a common interface (which is simply the
set of messages accepted).

Because visualization should not influence the sim-
ulation results, the communication between front- and
back-end is unidirectional. In our design this allows a
further simplification of the message-exchange proto-
col: Since the front-end does not expect any messages
from the back-end, the communication can work syn-
chronously. This also fits into the event-driven model-
ing style of Modelica. Note, that by using time-events

Partially filledPartially filled

new Message

sendMessage
add Parameter

Figure 2: modbus message lifecycle

for the event handling, the effect on the simulation per-
formance can be minimized by the simulation tool, as
discussed e.g. in [8].

3.2 Implementation

With the design decisions settled, the first task was
to implement an extensible, synchronous, platform-
independent IPC layer in Modelica. Instead of rein-
venting the wheel, we chose to use an existing IPC
solution and wrap around it’s C-interface. Because of
it’s availability, maturity, and simple C-API, the choice
fell on dbus, the current de-facto standard for IPC on
Linux [7] 1.

The first part of Modelica3D is thus a thin Modelica
wrapper around dbus, called modbus. Modbus allows
creation and sending of arbitrary messages as External
Objects. Message objects can be allocated, equipped
with parameters and send over a connection.

Since modbus only uses very few of features of
dbus (only one-to-one communication, uniform, stati-
cally known messages etc.), this implementation could
be considered overhead and in a sense it certainly
is. On the other hand, the implementation itself be-
comes rather simple: Currently it consists of 96 lines
of Modelica- and 216 lines of C-Code. In case a faster
solution is needed, modbus should be trivial to port
to whatever IPC-mechanism seems appropriate. Addi-
tionally, this strategy makes it unnecessary to store and
continuously calculate the 3d geometry. Depending
on the scene, this might yield significant runtime and

1It has been ported to windows, too.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 487
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

memory improvements over methods like the Multi-
Body visualization.

To further reduce the size of the interface (and make
it more convenient to implement), all methods pro-
vided by the Modelica3D API accept named param-
eters and allow to emit some of them (using defaults
instead). Internally modbus implements this by stor-
ing the parameters in a dbus map-object. This yields
some further overhead (dbus’ internal type-checking
becomes quite useless), but allows more selective up-
dates on graphical objects (e.g. it would be possible to
only change the Z-axis location of an object without
even knowing its X- and Y-axis locations).

Method name Description
loadSceneFromFile Loads a complete scene

from a file
createMaterial Create a material primitive
applyMaterial Use a material on an object
createBox Create a box primitive
createBoxAt Create a box primitive, with

a given orientation
createSphere Create a sphere primitive
createCylinder Create a cylinder primitive
createCylinderAt Create a cylinder primitive,

with a given orientation
createCone Create a cone primitive
createConeAt Create a cone primitive,

with a given orientation

Table 1: Modelica3D setup-methods

3.3 Alternatives

As already mentioned, the choice of dbus for message
exchange was mainly due to pragmatic reasons. Any
other platform-independent IPC solution might suffice
as well. Albeit, there is a fundamentally different de-
sign that needs some discussion. In certain settings,
every message exchange, no matter how lightweight,
may cause a too big delay:

Consider a real-time system running at 60 or more
fps and visualizing large sets of objects (e.g. a scene
in a game engine). Since synchronous message ex-
change requires at least 2 context switches, and a
context switch is rather costly [6], we can estimate
a theoretical upper limit of 105 simultaneously ani-
mated objects. Any practical limit will of course be
much smaller, since not only context switches are re-
quired. Basically, this means, that, independent of the

visualization or simulation complexity, a system com-
posed of some thousands of objects that shall be visu-
alized, cannot be rendered in real-time, when message-
passing is used.

So instead of sending lots of small messages about
the state of each object, front- and back-end could use
shared memory to exchange large chunks of data very
fast. Unfortunately, such a solution is hardly plat-
form independent and more complicated to implement
(since both sides would need to synchronize their ac-
cess on that data). But since it is obviously a useful
design alternative, further research seems to be appro-
priate.

3.4 Data structures and operations

Modelica3D comes only with a very small set of data
structures. Next to the already mentioned modbus ob-
jects, it provides a system state record, a controller
model and a definition of object-ids. The system state
basically only combines a modbus context object with
a connection and a counter for the current frame. The
controller in turn wraps the state and provides a sam-
pled boolean signal depending on a selected framerate.
It also modifies the state’s frame counter according to
the current time and can send a stop-message to the
back-end at the end of simulation time.

Method name Description
rotate Change an object’s orienta-

tion
moveTo Change an object’s location
moveZ Move along the Z-axis only
scale Change the size of an object
scaleZ Scale along the Z-axis only
setAmbientColor Sets the ambient color value

of a material
setDiffuseColor Sets the diffuse color value

of a material
setSpecularColor Sets the specular color value

of a material
setMatProperty Changes a given (named)

material property

Table 2: Modelica3D modification-methods

Id-objects are currently only heap-allocated strings.
But on demand, they might be easily exchanged with
a more complex internal implementation (e.g. if the
library would want to implement hashing or collect
statistics on the objects).

Modelica3D - Platform Independent Simulation Visualization

488 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

Most methods in the Modelica3D API fall into two
distinct groups: There are operations that describe the
setup of a scene (table 1) and operations that modify
a scene dynamically (table 2). The difference between
them is that the latter ones need a frame number, which
works as a logical clock that describes, when such a
modification takes effect, while the former ones are
always interpreted once at the beginning of the ani-
mation. The only exception from that pattern is the
stop-operation. Sending this message tells the client
to stop listening for further messages.

The set of currently implemented operations is
rather small. But due to the design of Modelica3D,
additional operations might be added by simply ex-
tending the package (and at least one backend). No
recompilation of the C-library is required.

Listing 1: moveTo-method in Modelica
function moveTo

input State state;
input Id id;
input Real p[3];
input Integer frame=state.frame;
output String r;

protected
Message msg = Message(TARGET ,
OBJECT , INTERFACE , "move_to");

algorithm
addString(msg , "reference",

getString(id));
addReal(msg , "x", p[1]);
addReal(msg , "y", p[2]);
addReal(msg , "z", p[3]);
addInteger(msg , "frame", frame);
r := sendMessage(state.conn , msg);

end moveTo;

Implementing an operation in Modelica is not dif-
ficult. Listing 1 shows the moveTo function is im-
plemented. It consists of allocating a message object
(from the dbus-connection constants for the target and
the dbus-interface and the method’s name), adding pa-
rameters to that message, and finally sending it. Fur-
ther operations should follow that pattern.

3.5 Back-ends

Currently, Modelica3D contains two back-end imple-
mentations. They demonstrate two distinct kinds of vi-
sualization tools. The first tool, blender [11], is a 3D-
modeling tool which can render high-quality movies.
Blender provides a python interpreter for scripting pur-
poses. Thus it was a natural choice to implement the
back-end parts in python.

Listing 2: moveTo-method in blender
@mod3D_api(reference = defined_object ,

frame = positive_int)
def move_to(self , reference ,

x=None , y=None , z=None ,
frame=1, immediate=False):

o = data.objects[reference]
context.scene.frame_set(frame=frame)
if immediate:

o.keyframe_insert('location ',
frame=frame - 1)

if (x != None):
o.location.x = x

if (y != None):
o.location.y = y

if (z != None):
o.location.z = z

o.keyframe_insert('location ',
frame=frame)

return reference

Listing 2 shows the implementation of the moveTo-
method in the blender back-end. The mod3D_api-
decorator is responsible for lifting a python function
into a dbus-method. That lifting is (due to the uniform
signature) the same for all back-end methods. Addi-
tionally certain runtime checks might be added (e.g.
checking if a given object-reference actually exists, a
number is positive etc.).

Since blender provides access to it’s internal
data representation (data.objects), the rest of the
method is straight-forward. It directly changes the ob-
ject’s coordinates (if provided by the client) and in-
serts an animation key-frame (allowing for interpo-
lated movement, if necessary).

The other back-end was implemented using Open-
SceneGraph [9], a free 3D-engine. Unlike blender, it
does not provide modeling facilities. Instead, its scope
is fast, real-time rendering. That way we demonstrate
how Modelica3D might also be used in interactive ap-
plications2.

4 Usage

In this section we show, how Modelica3D can be used
to visualize different kinds of simulations. First, we
will show how Modelica3D can handle state-of-the-art
visualizations on the basis of the MultiBody library.
Second we will describe the visualization of a simple,
structurally dynamic system.

2The graphical output, the input needs to be handled with some
other tool or library.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 489
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

PartialShape Advanced.Shape

Body

Figure 3: MultiBody visualization-class structure

4.1 Visualizing MultiBody

As mentioned earlier a popular (if not the most pop-
ular) method of visualization comes with the Model-
ica Standard Library: All models from the MultiBody
library can be visualized according to their geometri-
cal structure. Since a 3D-mechanical library naturally
contains information about the location and relative ro-
tation of objects, visualization is straight-forward.

This makes the MultiBody library a good example
of how Modelica3D can be used in such existing com-
plex hierarchies. In this use-case, all visualization in-
formation culminates in one class, the PartialShape
(Figure 3). That class basically consists of the shape
parameters (length, material etc.) and a translation ma-
trix. This gives us an insertion point of where to insert
the Modelica3D functionality. In a first step, we in-
troduced a controller object into this class, to hold the
Modelica3D context information. Since this controller
needs to be unique among all shapes, it is naturally
marked as outer (Listing 3).

Listing 3: Additional fields of PartialShape
outer M3D.Controller m3d_control;
Id id;
Id mat;
String res;
discrete Real[3] pos;
modcount.Context initContext

= modcount.Context();

Additionally an object-id is added for both the
shape’s material and geometry. The variable pos holds
the current position (resolved from the translation ma-
trix), while res captures the result of each operation
(ensuring that they are evaluated at least once). Finally
a modcount-context object is used to ensure singleton
evaluation of message generation. With those fields
present, the animation dynamics can easily be imple-
mented by when-algorithms:

Listing 4: PartialShape algorithmic dynamics
when initial() and

modcount.get(initContext) <> 1 then
id := shapeDescrTo3D(m3d_control.state ,

shapeType , length , width , height ,
lengthDirection);

mat := M3D.createMaterial
(m3d_control.state);

M3D.setAmbientColor(m3d_control.state ,
mat , color[1] / 255, color[2] / 255,
color[3] / 255, 1.0 , 0);

M3D.setSpecularColor(m3d_control.state ,
mat ,
specularCoefficient * color[1] / 255,
specularCoefficient * color[2] / 255,
specularCoefficient * color[3] / 255,
1.0 , 0);

M3D.applyMaterial(m3d_control.state ,
id , mat);

modcount.set(initContext , 1);
end when;

when m3d_control.send and
modcount.get(initContext) == 1 then

pos := r + Frames.resolve1(R, r_shape);
res := M3D.rotate(m3d_control.state ,

id , R.T , m3d_control.state.frame);
res := M3D.moveTo(m3d_control.state ,

id , pos , m3d_control.state.frame);
end when;

Figure 4: MultiBody visualization with
Gtk+/OpenSceneGraph back-end

In this example we omitted some dynamics like
changing lengths or colors, since this is unused in
ourexample models (all shapes basically remain con-
stant during simulation). If necessary, those details can
be added here easily. Also messages are always sent,
even if there is no movement on every frame. A more
sophisticated implementation could detect a relevant

Modelica3D - Platform Independent Simulation Visualization

490 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

change in the model and decide whether or not to up-
date the visualization state.

With this small extension, we were able to simulate
and visualize the examples from the standard library
with the OpenModelica simulation tools (Figure 4).
Thus we successfully demonstrated that by only using
standardized techniques, we could visualize complex
models.

4.2 Variable-structure modeling

A variable-structure model is a model which can con-
sist of different systems of equations (with different
numbers of equations) and different variables depend-
ing on the simulation time. This is of interest, when a
model has different levels of detail. Another applica-
tion is to change the model’s behavior described by a
different set of equations.

Simulation engines like Dymola, SimulationX and
OpenModelica do not support such changes. To over-
come this drawback and still be able to use common
simulation engines for the simulation of a model, a
Python framework was introduced in [10]. This frame-
work allows the user to specify a variable-structure
model. The user can specify an arbitrary number of
models and switches between these models. The user
also has to specify how the new model should be ini-
tialized with the end values of the old mode.

For now the simulation engines Dymola, OpenMod-
elica and Simulink are integrated in the framework.
But the framework is implemented in such a way that
other environments can be added quite simply. After
specifying the model the Framework starts to simu-
late the first model in the chosen simulation environ-
ment. The model needs a stop condition which spec-
ifies when another model should be used and defines
the next model. The framework uses this information
to switch to the next model and initialize this model
with the correct values.

We demonstrate this approach with a simple bounc-
ing ball model. This model could of course be mod-
eled without the variable-structure approach, but it is
used for didactic purposes for the modes are easy to
understand and the results are good to visualize.

This model consists of two separate modes. The
first is the common falling mass model which is valid
as long as the ball does not touch the ground. As
soon as it touches the ground the ball is modeled as
a spring/damper system and therefore the elastic de-
formation of the model and the bouncing back off the
ground can be modeled easily. As soon as the ball
leaves the ground again the falling mass model is used

Free fallFree fall

Spring/DamperSpring/Damper

stoptime

stoptime

height < radius

spring length > radius

Figure 5: Statechart of the bouncing ball variable-
structure model

again. Figure 5 shows a statechart with the two modes
and the switching condition is presented.

Simulating this model with the framework and plot-
ting the center of the ball results in the plot shown in
figure 6. Here it can be seen, that the center point of the
ball reaches below the radius (1.0) of the ball. This ef-
fect is caused by the elasticity of the ball in the spring/-
damper mode.

Figure 6: Center point of the bouncing ball model

A simulation of a variable-structure model with the
Python framework starts simulations of the different
modes sequentially. To be able to visualize such sim-
ulation results using Modelica3D, the models describ-
ing the states of the system need to fulfill two require-
ments:

First, they need to work on a common scene. Set-
ting up such a scene is trivial: Either by directly load-
ing it into the rendering tool at start or by creating a

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 491
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

Figure 7: Ball in free-fall mode

dedicated initial state that handles all setup commands
from the Modelica3D API. Here the decision of us-
ing IPC instead of direct linking pays off: Since the
rendering tool runs only once, no special treatment for
structurally dynamic systems is necessary. Second, all
models need to know which parts of the scene they
modify. In our example, both models need to know
the name of the ball. This visualization interface can-
not be statically checked.

Listing 5: Free-fall visualization

algorithm
when initial() and

modcount.get(initContext) <> 1 then
ball := M3D.objectId("Ball");
modcount.set(initContext , 1);

end when;
when m3d_control.send and

modcount.get(initContext) == 1 then
M3D.moveZ(m3d_control.state ,
ball , h, m3d_control.state.frame);

end when;

In our example, we took a simple approach to mod-
eling: The scene consists only of a plane representing
the ground and a sphere for the ball. Camera and some
lighting is added by blender. In free-fall mode, the
only thing to change is the location of the sphere on
the Z-axis (Listing 5). On-ground, we model the com-
pression of the ball by scaling and moving the sphere
along the Z-axis.

Since the python framework controls the activation
and deactivation of the states (by extending the phys-
ical models with terminal-conditions etc.), this ap-
proach works seamlessly: Figure 7 shows the ball
falling towards the plane. The compression is captured
in figure 8. Naturally, the true visual effect of bounc-
ing can not be shown in single images, but only when
viewing the whole animation.

Figure 8: Ball compressed

5 Evaluation

We evaluated a development version of Modelica3D
(enhanced with the ability to group objects on the
back-end for simpler handling of complex scenes) in a
case study of a solar-thermal hydraulic system, which
is integrated in the structure of a building envelope.
For this objective, several sub-steps had to be realized.

5.1 Modelica3D extensions of the physical
models

First, the component models of the library Build-
ingSystems 3 were extended with the ability to have
a representation within a 3D scene and to show val-
ues such as temperatures, pressures or mass flow rates.
Figure 9 shows this extension procedure for the ex-
ample of a 1D-segmented thermal hydraulic model of
a tube. The new model class PipeStraightVis3D was
derived from the existing physical model class PipeS-
traight and from a general model class for 3D repre-
sentation ModelVis3D.

The model extension comprises the definition of
the shape of the 3D sub-primitives (here the cylinder
pieces of the segmented fluid volume), the combina-
tion of them in a common container, the definition of
the material (the appearance in the 3D scene) incl. the
link to the sub-primitives, the alignment and merging
of the sub-primitives to the common 3D representation
and the mapping of the physical values to a graphical
representation within the 3D model (in this case the
fluid temperature of each fluid segment).

On a next level, several 3D-extended tube models
and a 3D-extended pump model were combined to a
simple thermal hydraulic loop. Figure 10 shows the
2D diagram of the Modelica system model on the left
and the corresponding 3D animated scene on the right.

3http://www.modelica-buildingsystems.de

Modelica3D - Platform Independent Simulation Visualization

492 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

http://www.modelica-buildingsystems.de

Figure 9: Extending a physical model for the use in
Modelica3D

5.2 Case study of a solar thermal system

As the first complex application of the 3D visualiza-
tion method, a solar thermal system for warm water
production was used (Figure 10 left). The components
of the solar thermal system are two evacuated tube col-
lectors with a total aperture area of 6.34 m2 and a hot
water storage with a volume of 400 liters. The roof
collector is aligned to the south and tilted with an an-
gle of 30°. An external plate heat exchanger transfers
the produced thermal energy from the solar loop to the
storage loop. With the help of a two-point-controller
the solar pump and the storage pump are switched on,

Figure 10: 2D and 3D representation of a thermal hy-
draulic loop

if the collector outlet temperature is 4K higher than
the temperature in the lower part of the storage. As
climate boundary conditions weather data from Ham-
burg (Germany) were used.

In the simulation scenario a load process for the
thermal water storage over a time period of 24 h dur-
ing a summer day were calculated. At the beginning of
the load process the fluid temperatures in the collector,
in the pipes and in the storage was set to 20 °C. Figure
10 (right) shows the described solar thermal system as
a graphical 2D diagram, based on the "3D-extended"-
components of the BuildingSystem-library.

Figure 11 illustrates the simulated transient load
process for the summer day, described by the most
important system variables such as the solar irradia-
tion on the collector, the mass flow rate of the storage
pump, the collector outlet temperature and the storage
temperature at the bottom.

Figure 11: Simulated load process of the solar thermal
system

For a clear representation within a 3D scene, the
model of the solar thermal system was embedded in
the 3D model of a building envelope. The 3D building
envelope was modeled as a pure geometrical represen-
tation without any physical behavior. In this manner,
realistic geometries and positions of different technical
components of the solar thermal system (tube lengths
and diameters, the required space of the storage and
the collectors etc.) can be visualized. Figure 12 shows
a snapshot of a the visualized transient load process
of the storage during the hours before noon during a
summer day in Hamburg. The different colors illus-
trate the temperatures of the fluid within the collec-
tor model, the tubes and the warm water storage from
cold (blue) to warm (green). Because the collectors
are serial connected and the cold fluid enters at first the
left collector, the temperature gradient within the seg-
mented collector model increases from left two right.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 493
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

Figure 12: 3D-scene of the solar thermal system

5.3 Results

The result of the evalution can be summarized as fol-
lows:

• The developed method allows a performant rep-
resentation of 3D scenes with a large quantity of
animated graphical 3D elements.

• It is possible to represent complex 3D scenes with
the unchanged Modelica code in different 3D en-
vironments (eg. Blender and OpenSceneGraph)

• A 3D modeling editor for a time efficient and
correct configuration of complex 3D Modelica
scenes is absolutely necessary

6 Conclusion

Modelica can be extended too support 3D-
visualization of experiments. That extension can
completely be implemented in form of a library
by only using already standardized techniques. By
choosing a loosely coupled, distributed architecture,
the extension can support different back-ends and
itself be extended easily. Additionally, innovative
use-cases as variable-structure modeling are supported
by this approach.

6.1 Obtaining Modelica3D

A public version of Modelica3D can is pub-
lished under the terms of the GNU General
Public License. The project page can be found
at https://mlcontrol.uebb.tu-berlin.de/
redmine/projects/modelica3d-public.

References

[1] Modelica - a unified object-oriented language for
physical systems modeling, 2010.

[2] T. Bellmann. Interactive Simulations and Ad-
vanced Visualization with Modelica. In Pro-
ceedings of the 7th Modelica Conference, Como,
Italy, 2009.

[3] V. Engelson. 3D Graphics and Modelica-an in-
tegrated approach. Linköping Electronic Articles
in Computer and Information Science. Linköping
universitet, 2000.

[4] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The openmodelica modeling,
simulation, and development environment. In
Proceedings of the 46th Conference on Simula-
tion and Modeling, pages 83–90, 2005.

[5] Thomas Hoeft and Christoph Nytsch-Geusen.
Design and validation of an annotation-concept
for the representation of 3d-geometries in model-
ica. In Proceedings of the 6th International Mod-
elica Conference, 2008.

[6] C. Li, C. Ding, and K. Shen. Quantifying The
Cost of Context Switch. In Proceedings of the
2007 workshop on Experimental computer sci-
ence, page 2. ACM, 2007.

[7] R. Love. Get on the D-BUS. Linux Journal,
2005(130):3, 2005.

[8] H. Lundvall, P. Fritzson, and B. Bachmann.
Event handling in the openmodelica compiler
and runtime system. Technical report, Technical
Report 2, Dept. Computer and Information Sci-
ence, Linköping Univ, 2008.

[9] Paul Martz. OpenSceneGraph Quick Start
Guide, 2007.

[10] A. Mehlhase. A Python Package for Simulating
Variable-Structure Models with Dymola. submit-
ted, feb 2012.

[11] Ton Roosendaal and Stefano Selleri. The Official
Blender 2.3 Guide: Free 3D Creation Suite for
Modeling, Animation, and Rendering. No Starch
Press, June 2004.

Modelica3D - Platform Independent Simulation Visualization

494 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public
https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public

	1 Introduction
	1.1 Contribution

	2 State of the art
	3 Modelica3D
	3.1 Design Decisions
	3.2 Implementation
	3.3 Alternatives
	3.4 Data structures and operations
	3.5 Back-ends

	4 Usage
	4.1 Visualizing MultiBody
	4.2 Variable-structure modeling

	5 Evaluation
	5.1 Modelica3D extensions of the physical models
	5.2 Case study of a solar thermal system
	5.3 Results

	6 Conclusion
	6.1 Obtaining Modelica3D

