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Abstract

Many studies for which simulation is necessary in-
clude the presence of control systems. While plenty
of Modelica libraries are nowadays available to accu-
rately represent the plant, the same is not so true as
for the control elements, since industrial ones are en-
dowed with a number of functionalities – and often
present system- or even vendor-specific peculiarities
– that are not represented by the typical blocks (e.g.,
based on transfer functions) offered by the existing li-
braries. This paper is an attempt to start filling the gap
and provide an efficient solution, structured and organ-
ised in such a way to be easily understood by control
specialists, and to ease information transfer between
simulation studies and implementation.
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1 Introduction

In many simulation studies, control plays a relevant
role. Sometimes this is because the study is precisely
aimed at setting up the control system for the plant at
hand, but in many other situations, even if control syn-
thesis is not the main goal of the study, the behaviour
itself of the modelled object depends significantly on
the operation of some controls. As such, quite often
the representation of the control system deserves sub-
stantially the same accuracy as the representation of
the physical plant (in the broad sense of the term).

At present, numerous Modelica libraries are avail-
able to represent plants with a virtually arbitrarily ac-
curacy, but the same is not true – at least, to the best of
the authors’ knowledge – for controllers. To appreci-
ate that, the interested reader could for example throw
a glance at the PID block as provided by any control
environment, be it targeted to a PLC, a DCS, or what-
ever. Most likely, he/she will see something similar to
the two examples shown in figure 1.

Apparently, such blocks are more articulated than
for example the PID of the Modelica Standard Library

Figure 1: Two examples of PID blocks as sen in typical
industrial control tools.

(MSL)—as by the way real-life control systems do ex-
hibit a number of peculiarities that are not accounted
for in “textbook” representation, see e.g. [9]. The re-
marks just made are in no sense meant to be a criti-
cism, it is worth stating; nonetheless they evidence that
for the simple controller representations of the MSL
(or analogous ones) to be adequate, some conditions
are necessary. Summarising, and sticking to the PID
example,

• the specific form of the controller (let alone the
detailed operation of the control algorithm) must
not be relevant for the problem,

• and the operation of typical elements of industrial
controllers, such as tracking and locks, must not
be of concern either.

If this is the case, MSL-like representations are per-
fectly adequate. If on the contrary either this is not the
case in the simulation scenarii to be considered, or one
wants to describe the control system so as to be capa-
ble of simulating the controlled plant in its entire set
of operating modes, the same representations cannot
serve the desired purpose.

For the reasons above, and after several years during
which the authors and their group have been develop-
ing ad hoc solutions for individual cases, the decision
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Figure 2: An overview of the library structure.

was recently taken to put all of that knowledge and
Modelica code together in a structured manner.

The result is the library described in this paper,
which is organised as follows. Section 2 presents and
motivates the most qualifying characteristics of the li-
brary. Section 3 presents the library structure giving
just a quick overview, as the library documentation
provides full detail on the matter. Section 4 reports
some simulation examples, these too available in the
library, to evidence and further motivate its distinc-
tive characters previously discussed. Finally, in sec-
tion 6 some conclusions are drawn, and future work is
sketched out.

2 Main characteristics of the library

To fulfil the requirements envisaged in section 1, it is
first necessary to include both modulating and logic
control elements.

For modulating elements, it is required to account
for the typical representations of the major control
blocks – see e.g. [8, 3] for how many forms a PID can
take – and the typical realisations of the main nonlin-
ear functionalities: for example, taking again the PID
as example, antiwindup can be realised internally or
by reading back the applied control from the actuator.
Also, logic functionalities need incorporating, such as
tracking and the possibility of preventing the control
signal from increasing or decreasing, which is of great
usefulness in cascade controls. Finally, different al-
gorithmic realisations (e.g., positional or incremental)
need considering, since in some cases they can affect

the behaviour of the element, especially if controller
parameters can be modified online as is the case for
gain-scheduling blocks.

For logic elements, the typical set available in
SCADA-like products needs representing, including
timers, counters, sequencers, and so forth.

Then, it would be advisable that the modelled con-
trol elements allow for variable-step simulation, to
avoid obliging the analyst to use the library only with
fixed-step solution, which could be unacceptably in-
efficient in more than one case. As such, the choice
was made to provide both a time-driven and an event-
driven version of the same element wherever this is
possible, and research is underway to extend this cov-
erage to the whole library.

Moreover, in a view to good acceptance and wide
utilisation, care was taken to give the library elements
a look and feel as similar as possible to what a user
of SCADA (or analogous) tools expects to see. This
was not pursued up to its extreme consequences, but is
definitely a peculiarity.

Finally, an initial set of autotuning controllers is in-
cluded, building on previous research see e.g. [1, 5, 7,
6]; this is meant both to ease control setup in simula-
tion, and to help the user familiarise with that technol-
ogy, and the underlying theory.

3 The library structure

The library is organised into subpackages; a list of the
major ones is given below.
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• Logical, that contains all logical elements,
timers, counters, and so forth.

• MathOperations, including the necessary opera-
tors for real and integer numbers (which is some-
times very useful to correctly represent the oper-
ation of some industrial blocks).

• LinearSystems, where some blocks are con-
tained that can be used to easily close loops to test
controllers. Part of those blocks are also related to
well known controller benchmarks, see e.g. [2];
of course this subpackage is provided basically
for convenience and to obtain a self-contained li-
brary, but many alternatives can be used.

• Controllers, where both modulating and logic
control blocks are represented, in three basic (and
interchangeable) manners: (a) as continuous-
time equations, (b) as equations but evolving
by events, and (c) – when multiple assignments
could not be avoided, although research to solve
this is underway – as algorithms.

• Applications, that contains a quite large set of
examples to better understand and use the library.

Figure 2 shows an overview of the library struc-
ture. Readers that are familiar with control systems
and control theory will easily get familiar with the li-
brary and its structure (just by observing the library
components); non experienced user will find further
details into the included documentation.

3.1 Interfaces

Figure 3: Interface for a generic controller. The in-
put/output connector evidenced in yellow are always
present, the other ones can be conditionally selected.

Each model/block/controller contained into the In-
dustrial Control Library can be connected together

Table 1: This table contains the definition of the in-
terface of a generic controller with its conditional in-
put/output connectors.

Name Description Conditional?

SP Set Point NO
PV Process Variable NO
CS Control Signal NO
TR Track Reference YES
TS Track Signal YES

Bias Bias signal YES
ATreq Automatic Tuning request YES

with other models ones through its standard connec-
tors, defined in the Modelica Standard Library. In
each subpackage, an ad-hoc partial interface model
has been defined in order to improve the readability
of the code, and reduce as much as possible the num-
ber of code lines spent for non specific purposes. Fig-
ure 3 shows the interface of a generic controller. The
input/output connectors of such a block can be con-
ditionally selected through various boolean flags as
shown in table 1. With these conditional connectors
a controller can be used even if it does not use all its
features, without connecting dummy inputs to it and
thus increasing the clarity of the control scheme. The
interfaces and the variables of the models have been
named according to the standard terminology in the
field of control systems. The interested reader that is
not familiar with this topic can find more information
in [4].

4 Simulation examples

This section contains a small sample of the examples
contained in the library, to show the possible usage
of some models, and also evidence the usefulness of
adopting the proposed representation.

4.1 Zero crossing count

This examples uses some blocks of the Logical sub-
package, as shown in figure 5. More in detail, the sig-
nal represented by y(t) = sin(t) is compared with to
z(t) = 0. Each time the signal crosses the reference,
the boolean output of the comparison block rises. The
rising edges are counted by the digital counter, in the
period comprised between t = 2.2 and t = 10.2. Figure
5 reports the Set and Reset Count signals, while figure
6 shows the behaviour of the counter value.
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Figure 4: Scheme of the zero crossing count model.

Figure 5: Zero crossing signal, Set count signal and
Reset count signal.

4.2 PID with bias and tracking mode

In this example the second order process defined as

P(s) =
(1+15s)

(1+2s)(1+10s)
(1)

is controlled by a PID regulator, to track given step Set
Point signal, and reject a load disturbance acting on the
process input (as shown in figure 7). Two controllers
are compared, namely a PID and a PID with bias in-
put. Figure 8 reports the Set Point (blue line), the
Process Variable of the process without control (red),
controlled with the PID (green) and the PID with bias

Figure 6: Counter value.

Figure 7: Classic PID controller: without bias signal
(top) and with bias signal (bottom).

Figure 8: Set Point (blue), Process Variable without
control (red), with a PID controller (green) and with a
biased PID controller (magenta).

(magenta). The PID rejects the disturbance just via
the feedback path, that makes its action slower. On the
contrary, the PID with bias acts immediately, thanks to
its feed forward character.

Carrying on to representing the tracking mode op-
eration (see figure 9), an example is shown with the
process defined in (1), still controlled by a PID. Figure
10 shows the Set Point, the process variable and the
tracking switch signal, while figure 11 shows the con-
trol signal, the track reference and the integral action
of the controller. The Tracking mode starts at t = 40s,
before the controller has led the process variable to the
Set Point reference. When the Tracking mode starts,
the control signal becomes equal to the track reference
(as shown in figure 11). In this case the track signal
decreases and then increases, moving the process vari-
able in a neighbourhood of the set point. When the
tracking mode is enabled, the integrator does not inte-
grate the error signal, rather is managed in such a way
to be consistent with the track reference. Thus, the
transition from the tracking mode to the automatic one
is bumpless.
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Figure 9: PID with Track Switch ans Track Reference
signals

Figure 10: Set Point (blue), Process Variable (red), and
Track Switch signal (green).

Figure 11: Control Signal (blue), Track Reference Sig-
nal (red) and Integral action (green).

Figure 12: Set Point (blue), Process Variable without
control (green), process Variable with PID (red) and
PV with TDO PID (magenta)

Figure 13: Control Signal (blue) and CS of TDO PID
(red)

4.3 Time Division Output controller

The process (1) is here controlled with a Time Divi-
sion Output PID. Such an actuation scheme is used to
have an on/off actuator behave like a modulating one,
and is quite typical when either the actuator cannot
be partialised, or doing so would unacceptably reduce
its efficiency. The controller, implemented in its digi-
tal algorithmic form, first computes the control signal,
and then converts it into the duty cycle of a rectangu-
lar wave of assigned period. Figure 12 contains the Set
Point reference (blue), the Process Variable of a pro-
cess without control (green), the Process Variable of a
digital PID (red) and the Process Variable of a TDO
PID (magenta). Since the TDO control signal changes
continuously, the relative process variable has a sort
of ripple, however the overall behaviour is essentially
the same as the digital PID without TDO. The control
signals computed by the two controllers are shown in
figure 15.

4.4 Cascade control with increment and
decrement locks

This examples compares two cascade control schemes,
one with and one without increment/decrement locks.
When two controllers are connected together in a cas-
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Figure 14: Cascade control schemes: a) without incre-
ment/decrement locks – b) with increment/decrement
locks.

Figure 15: Cascade control with and without incre-
ment/decrement locks – outer set point and process
variable, inner set point.

cade control scheme, the inner controller typically reg-
ulates the actuator, while the outer one provides the
Set Point reference for the inner one. Since the inner
controller acts on the plant, its Control Signal has to
be limited, and AntiWindup is in order, but in general
it is not possible for the outer controller, to know the
values for which the inner regulator saturates.

Such a problem can be avoided by using the PID in
its incremental form, using the Increment/Decrement
lock feature, and creating an external (logical) loop be-
tween the controllers, as shown in figure 14.

If the inner regulator saturates, its satHi signal be-
comes true. Connecting this signal to the forbidIncre-
ment input of the outer controller, avoiding a useless
and potentially dangerous increase of its Control Sig-
nal (that is the Set point of the inner controller that sat-
urated). With such a scheme, the mentioned inter-loop
windup-like effect can be avoided.

In figures 15 and 16, that show the results, the
green line is the CS of the outer controller with
Increment/Decrement lock, while the black one is
the output of the outer controller without Incre-
ment/Decrement lock. The black line shows a windup
like effect that turns in a slower reaction when the Set

Figure 16: Cascade control with and without incre-
ment/decrement locks – inner control.

Figure 17: Modelica diagram of a level control
scheme. The two subsystems (the control system and
the process to be controlled) are evidenced with differ-
ent background colors.

Point changes at time t = 30.

4.5 A level control case

In this example, models from the presented library are
used together with models from the MSL. The aim of
this example is to show the usefulness of the presented
models, and how they can be easily integrated and con-
nected with others. For this purpose, the chosen exam-
ple refers to the problem of controlling the water level
in a tank. The water level is the process variable, and
the system (see figure 17) is composed of a tank and
a pipe connected to a valve, that discharges water to
the atmospheric pressure. The valve actuator is simply
represented by a first order system with unity gain.

The control system is composed of a measurement
part and a control (stricto sensu) one. Concerning the
measurement part, the pressure sensor measures the
absolute pressure at the bottom of the tank. The mea-
sured pressure pm is subtracted from the atmospheric
pressure p0, and then divided by the gravity accelera-
tion g and the water density ρ , in order to obtain the
water level

l =
pm− p0

ρg
(2)

The PI controller, given the level measurement and
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Figure 18: Set Point water level reference, Process
Variable and valve position command

Figure 19: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s)

the set point, computes its control action, i.e., the pre-
scribed valve position, limited between CS ∈ [0,1] in
order to avoid windup effects (thus CSmin = 0 and
CSmax = 1). The tank is 2m height, and the water
level at time t = 0 is L = 1 m. In the first phase the
controller is required to maintain the level at the initial
value (SP= 1 m), while at t = 1200 s the level set point
has a steep variation (SP = 0.5 m). The controller has
to act on the valve in order to decrease the water level
to the desired value. A disturbance, represented by a
water mass flow rate entering the tank, becomes dif-
ferent from zero at time t = 3600 s. Figure 18 shows
reference, water level and valve position command.

The simulation can be performed at an initial stage
assuming that the controller is a continuous time one
(T s = 0), and the math operations are in double pre-
cision (FixedPoint = false). In such a phase, it is thus
possible to concentrate on the controller design (not on
implementation-related facts).

As a further stage, one could introduce more details
in order to simulate a more realistic system. At first
it is possible to introduce the time discretisation, and
investigate the effects of the sampling time. Figure
19 shows the simulation results with a sampling time
T s = 5 s.

Figure 20: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s and Fixed Point math operations)

An additional level of detail can be the introduction
of fixed point math operations. In this example, a num-
ber of bit Nbit = 24 was chosen, which means that the
integer number that can be represented are comprises
between MIN =−8388609 and MAX = 8388608. At
a first stage, the measured pressure have to be sub-
tracted of the ambient one. In the worst case, the
higher pressure value that can be read as input from
the math operation block is 101325+1000 ·9.81 ·2 =
120945, that is more or less two orders of magnitude
less than the higher integer number MAX . This means
that input numbers can be multiplied by a scale factor
comprised between 10 and 50. In this case the scale
factor has been chosen as sFactor = 20. In a similar
way, the scale factor for the division can be chosen (In
this case, sFactor = 500). Note that a large number of
bits is required because the pressure variation is small
with respect to its absolute value. Using such a mod-
elling approach, it is possible to estimate the amount
of bits required, and to directly test the correctness of
the design strategy. Figure 20 shows that the numerical
errors due to a wrong design are visible on the Control
Signal.

5 Towards Modelica 3.3

The recent definition of the version 3.3 of the Mod-
elica language introduces new elements for describing
synchronous behaviours, and also new elements suited
to define synchronous state machines. This evolution
is primarily made to ease the activity of modelling re-
alistic control algorithms.

These evolutions will introduce some advantages in
the development of models that are pure discrete or
logical, since a standardised framework for develop-
ing such models will help in the design, creation and
maintenance of models in which many of these com-
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ponents are connected together. Considering elements
that can be either continuous time or discrete time, and
which events are not regular but can be dynamically
driven; however, it is not yet clear if this language evo-
lutions will fit also such model characteristics, that (as
shown) are of great importance for tailoring the simu-
lation burden to the needs of the addressed study.

The last interesting point that has not yet been con-
sidered, but in the authors’ opinion should be, is the
introduction of the Fixed Point arithmetic. The pre-
sented library takes into account this problem and it
is managed in a preliminary and simplified way, pro-
viding a solution just for simple cases. The introduc-
tion of a new type of variable with its specific oper-
ations will be an important step in the direction of a
really control (and control synthesis) oriented simula-
tion tool.

6 Conclusions and future work

A Modelica library for industrial controllers was pre-
sented, with several peculiar features, and some exam-
ples were shown to illustrate its potentialities.

In the authors’ opinion the library can significantly
help the analyst who has to address studies where a
precise control representation plays a relevant role—
more frequent a case than one may expect at a first
glance, by the way. The presented library in the first
place responds to such a demand, and in addition
tries to preserve the advantages of variable-step sim-
ulation when possible—a matter on which further re-
search is however underway. The library is by def-
inition extensible, so that one may even want to in-
clude the exact (i.e., code replica) representation of
some block of interest, employing those already re-
alised as a starting point. Implicitly, then, the library
has also a didactic value, since the user can see how
several concepts are actually put to work. Some ex-
amples were reported to show the library operation.
All of these – plus others omitted here for space rea-
sons – are available in the library itself (available at
http://home.dei.polimi.it/leva/download.html), for the
convenience of the interested reader.

Future activity (apart from the already mentioned
one related to simulation efficiency) will be directed at
expanding the library in all its sections, including the
autotuning one, and to extensively use it in simulation
studies. The community is encouraged to use, improve
– and correct if necessary – the library, and feedback
would be highly appreciated by the authors in order to
continuously improve the results.
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