
                       

A Data-Parallel Algorithmic Modelica Extension for Efficient  

 Execution on Multi-Core Platforms 

Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritzson, Kristian Stavåker  

Department of Computer and Information Science 

Linköping University, SE-581 83 Linköping, Sweden 

{mahder.gebremedin, peter.fritzson, Kristian.stavaker}@liu.se, afshe586@student.liu.se

Abstract 

New multi-core CPU and GPU architectures promise 

high computational power at a low cost if suitable 

computational algorithms can be developed. However, 

parallel programming for such architectures is usually 

non-portable, low-level and error-prone. To make the 

computational power of new multi-core architectures 

more easily available to Modelica modelers, we have 

developed the ParModelica algorithmic language ex-

tension to the high-level Modelica modeling language, 

together with a prototype implementation in the 

OpenModelica framework. This enables the Modelica 

modeler to express parallel algorithms directly at the 

Modelica language level. The generated code is porta-

ble between several multi-core architectures since it is 

based on the OpenCL programming model. The im-

plementation has been evaluated on a benchmark suite 

containing models with matrix multiplication, Eigen 

value computation, and stationary heat conduction. 

Good speedups were obtained for large problem sizes 

on both multi-core CPUs and GPUs. To our 

knowledge, this is the first high-performing portable 

explicit parallel programming extension to Modelica. 
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1 Introduction 

Models of large industrial systems are becoming in-

creasingly complex, causing long computation time for 

simulation. This makes is attractive to investigate 

methods to use modern multi-core architectures to 

speedup computations. 

Efficient parallel execution of Modelica models has 

been a research goal of our group for a long time [4], 

[5], [6], [7], involving improvements both in the com-

pilation process and in the run-time system for parallel 

execution. Our previous work on compilation of data-

parallel models, [7] and [8], has primarily addressed 

compilation of purely equation-based Modelica models 

for simulation on NVIDIA Graphic Processing Units 

(GPUs). Several parallel architectures have been target-

ed, such as standard Intel multi-core CPUs, IBM Cell 

B.E, and NVIDIA GPUs. All the implementation work 

has been done in the OpenModelica compiler frame-

work [2], which is an open-source implementation of a 

Modelica compiler, simulator, and development envi-

ronment. Related research on parallel numeric solvers 

can for example be found in [9].  

The work presented in this paper presents an algo-

rithmic Modelica language extension called ParModeli-

ca for efficient portable explicit parallel Modelica pro-

gramming. Portability is achieved based on the 

OpenCL [14] standard which is available on several 

multi-core architectures. ParModelica is evaluated us-

ing a benchmark test suite called Modelica PARallel 

benchmark suite (MPAR) which makes use of these 

language extensions and includes models which repre-

sent heavy computations. 

This paper is organized as follows. Section 2 gives a 

general introduction to Modelica simulation on parallel 

architectures. Section 3 gives an overview of GPUs, 

CUDA and OpenCL, whereas the new parallel Modeli-

ca language extensions are presented in Section 4. Sec-

tion 5 briefly describes measurements using the parallel 

benchmark test suite. Finally, Section 6 gives pro-

gramming guidelines to use ParModelica, and Section 7 

presents conclusions and future work. 

2 Parallel Simulation of Modelica 

Models on Multi-Core Computers 

The process of compiling and simulating Modelica 

models to sequential code is described e.g. in [3] and 

[12]. The handling of equations is rather complex and 

involves symbolic index reduction, topological sorting 

according to the causal dependencies between the equa-

tions, conversion into assignment statement form, etc. 

Simulation corresponds to "solving" the compiled 
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equation system with respect to time using a numerical 

integration method. 

Compiling Modelica models for efficient parallel 

simulation on multi-core architectures requires addi-

tional methods compared to the typical approaches de-

scribed in [3] and [12]. The parallel methods can be 

roughly divided into the following three groups: 

 Automatic parallelization of Modelica models. Sev-

eral approaches have been investigated: centralized 

solver approach, distributed solver approach and 

compilation of unexpanded array equations. With 

the first approach the solver is run on one core and 

in each time-step the computation of the equation 

system is done in parallel over several cores [4]. In 

the second approach the solver and the equation sys-

tem are distributed across several cores [5]. With 

the third approach Modelica models with array 

equations are compiled unexpanded and simulated 

on multi-core architectures. 

 Coarse-grained explicit parallelization using com-

ponents. Components of the model are simulated in 

parallel partly de-coupled using time delays be-

tween the different components, see [11] for a 

summary. A different solver, with different time 

step, etc., can be used for each component. A relat-

ed approach has been used in the xMOD  tool [26].  

 Explicit parallel programming language constructs. 

This approach is explored in the NestStepModelica 

prototype [10] and in this paper with the ParModeli-

ca language extension. Parallel extensions have 

been developed for other languages, e.g. parfor loop 

and gpu arrays in Matlab, Visual C++ parallel_for, 

Mathematica parallelDo,  etc.   

3 GPU Architectures, CUDA, and 

OpenCL 

Graphics Processing Units (GPUs) have recently be-

come increasingly programmable and applicable to 

general purpose numeric computing. The theoretical 

processing power of GPUs has in recent years far sur-

passed that of CPUs due to the highly parallel compu-

ting approach of GPUs.  

However, to get good performance, GPU architec-

tures should be used for simulation of models of a regu-

lar structure with large numbers of similar data objects. 

The computations related to each data object can then 

be executed in parallel, one or more data objects on 

each core, so-called data-parallel computing. It is also 

very important to use the GPU memory hierarchy ef-

fectively in order to get good performance. 

In Section 3.1 the NVIDIA GPU with its CUDA 

programming model is presented as an influential ex-

ample of GPU architecture, followed by the portable 

OpenCL parallel programming model in Section 3.2. 

3.1 NVIDIA GPU CUDA – Compute Unified 

Device Architecture 

An important concept in NVIDIA CUDA (Computer 

Unified Device Architecture) for GPU programming is 

the distinction between host and device. The host is 

what executes normal programs, and the device works 

as a coprocessor to the host which runs CUDA threads 

by instruction from the host. This typically means that a 

CPU is the host and a GPU is the device, but it is also 

possible to debug CUDA programs by using the CPU 

as both host and device. The host and the device are 

assumed to have their own separate address spaces, the 

host memory and the device memory. The host can use 

the CUDA runtime API to control the device, for ex-

ample to allocate memory on the device and to transfer 

memory to and from the device. 

 

Figure 1. Simplified schematic of NVIDIA GPU 

architecture, consisting of a set of Streaming 

Multiprocessors (SM), each containing a number of Scalar 

Processors (SP) with fast private memory and on-ship 

local shared memory.  The GPU also has off-chip DRAM. 

The building block of the NVIDIA CUDA hardware 

architecture is the Streaming Multiprocessor (SM). In 

the NVIDIA Fermi-Tesla M2050 GPU, each SM con-

tains 32 Scalar Processors (SPs). The entire GPU has 

14 such SMs totaling to 448 SPs, as well as some off-

chip DRAM memory, see Figure 1. This gives a scala-

ble architecture where the performance of the GPU can 

be varied by having more or fewer SMs. 

To be able to take advantage of this architecture a 

program meant to run on the GPU, known as a kernel, 

needs to be massively multi-threaded. A kernel is just a 

C-function meant to execute on the GPU. When a ker-

nel is executed on the GPU it is divided into thread 

blocks, where each thread block contains an equal 

number of threads. These thread blocks are automati-

cally distributed among the SMs, so a programmer 
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need not consider the number of SMs a certain GPU 

has. All threads execute one common instruction at a 

time. If any threads take divergent execution paths, 

then each of these paths will be executed separately, 

and the threads will then converge again when all paths 

have been executed. This means that some SPs will be 

idle if the thread executions diverge. It is thus im-

portant that all threads agree on an execution path for 

optimal performance. 

This architecture is similar to the Single Instruction, 

Multiple Data (SIMD) architecture that vector proces-

sors use, and that most modern general-purpose CPUs 

have limited capabilities for too. NVIDIA call this ar-

chitecture Single Instruction, Multiple Thread (SIMT) 

instead, the difference being that each thread can exe-

cute independently, although at the cost of reduced per-

formance. It is also possible to regard each SM as a 

separate processor, which enables Multiple Instruc-

tions, Multiple Data (MIMD) parallelism. Using only 

MIMD parallelism will not make it possible to take full 

advantage of a GPU’s power, since each SM is a SIMD 

processor. To summarize: 

 Streaming Multiprocessors (SM) can work with dif-

ferent code, performing different operations with 

entirely different data (MIMD execution, Multiple 

Instruction Multiple Data). 

 All Scalar processors (SP) in one streaming multi-

processor execute the same instruction at the same 

time but work on different data (SIMT/SIMD exe-

cution, Single Instruction Multiple Data). 

3.1.1 NVIDIA GPU Memory Hierarchy 

As can be seen in Figure 1 there are several different 

types of memory in the CUDA hardware architecture. 

At the lowest level each SP has a set of registers, the 

number depending on the GPU’s capabilities. These 

registers are shared between all threads allocated to a 

SM, so the number of thread blocks that a SM can have 

active at the same time is limited by the register usage 

of each thread. Accessing a register typically requires 

no extra clock cycles per instruction, except for some 

special cases where delays may occur. 

Besides the registers there is also the shared (local) 

memory, which is shared by all SPs in a SM. The 

shared memory is implemented as fast on-chip 

memory, and accessing the shared memory is generally 

as fast as accessing a register. Since the shared memory 

is accessible to all threads in a block it allows the 

threads to cooperate efficiently by giving them fast ac-

cess to the same data.  

Most of the GPU memory is off-chip Dynamic 

Random Access Memory (DRAM). The amount of off-

chip memory on modern graphics cards range from 

several hundred megabytes to few gigabytes. The 

DRAM memory is much slower than the on-chip mem-

ories, and is also the only memory that is accessible to 

the host CPU, e.g. through DMA transfers. To summa-

rize:  

 Each scalar processor (SP) has a set of fast registers. 

(private memory) 

 Each streaming multiprocessor (SM) has a small lo-

cal shared memory (48KB on Tesla M2050 ) with 

relatively fast access. 

 Each GPU device has a slower off-chip DRAM 

(2GB on Tesla M2050) which is accessible from all 

streaming multiprocessors and externally e.g. from 

the CPU with DMA transfers. 

3.2 OpenCL – the Open Computing Language 

OpenCL [14] is the first open, free parallel computing 

standard for cross-platform parallel programming of 

modern processors including GPUs. The OpenCL pro-

gramming language is based on C99 with some exten-

sions for parallel execution management. By using 

OpenCL it is possible to write parallel algorithms that 

can be easily ported between multiple devices with 

minimal or no changes to the source code.  

The OpenCL framework consists of the OpenCL 

programming language, API, libraries, and a runtime 

system to support software development. The frame-

work can be divided into a hierarchy of models: Plat-

form Model, Memory model, Execution model, and 

Programming model. 

 

Figure 2. OpenCL platform architecture. 

The OpenCL platform architecture in Figure 2 is simi-

lar to the NVIDIA CUDA architecture in Figure 1: 

 Compute device – Graphics Processing Unit (GPU) 

 Compute unit – Streaming Multiprocessor (SM) 

 Processing element – Scalar Processor (SP) 

 Work-item – thread 

 Work-group – thread block 

The memory hierarchy (Figure 3) is also very similar: 

 Global memory – GPU off-chip DRAM memory 
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 Constant memory – read-only cache of off-chip 

memory 

 Local memory – on-chip shared memory that can be 

accessed by threads in the same SM 

 Private memory – on-chip registers in the same 

 

Figure 3. Memory hierarchy in the OpenCL memory 

model, closely related to typical GPU architectures such 

as NVIDIA. 

The memory regions can be accessed in the following 

way: 

Memory Regions  Access to Memory  

Constant Memory All work-items in all work-groups 

Local Memory All work-items in a work-group 

Private Memory Private to a work-item 

Global Memory All work-items in all work-groups 

3.2.1 OpenCL Execution Model 

The execution of an OpenCL program consists of two 

parts, the host program which executes on the host and 

the parallel OpenCL program, i.e., a collection of ker-

nels (also called kernel functions), which execute on 

the OpenCL device. The host program manages the 

execution of the OpenCL program.  

Kernels are executed simultaneously by all threads 

specified for the kernel execution. The number and 

mapping of threads to Computing Units of the OpenCL 

device is handled by the host program.  

Each thread executing an instance of a kernel is 

called a work-item. Each thread or work item has 

unique id to help identify it. Work items can have addi-

tional id fields depending on the arrangement specified 

by the host program.  

Work-items can be arranged into work-groups. Each 

work-group has a unique ID. Work-items are assigned 

a unique local ID within a work-group so that a single 

work-item can be uniquely identified by its global ID 

or by a combination of its local ID and work-group ID. 

 

Figure 4. OpenCL execution model, work-groups 

depicted as groups of squares corresponding to work-

items. Each work-group can be referred to by a unique ID, 

and each work-item by a unique local ID. 

The work-items in a given work-group execute concur-

rently on the processing elements of a single compute 

unit as depicted in Figure 4. 

Several programming models can be mapped onto 

this execution model. OpenCL explicitly supports two 

of these models: primarily the data parallel program-

ming model, but also the task parallel programming 

model 

4 ParModelica: Extending Modelica 

for Explicit Algorithmic Parallel 

Programming 

As mentioned in the introduction, the focus of the cur-

rent work is an extension (ParModelica) of the algo-

rithmic subset of Modelica for efficient explicit parallel 

programming on highly data-parallel SPMD (Single 

Program Multiple Data) architectures. The current 

ParModelica implementation generates OpenCL [14] 

code for parallel algorithms. OpenCL was selected in-

stead of CUDA [15] because of its portability between 

several multi-core platforms. Generating OpenCL code 

ensures that simulations can be run with parallel sup-

port on OpenCL enabled Graphics and Central Proces-

sor Units (GPUs and CPUs). This includes many multi-

core CPUs from [19] and Advanced Micro Devices 

(AMD) [18] as well as a range of GPUs from NVIDIA 

[17] and AMD [18].  

As mentioned earlier most previous work regarding 

parallel execution support in the OpenModelica com-

piler has been focused on automatic parallelization 

where the burden of finding and analyzing parallelism 

has been put on the compiler. In this work, however, 

we have decided to leave this responsibility to the end 

user programmer. The compiler provides additional 

high level language constructs needed for explicitly 

stating parallelism in the algorithmic part of the model-

ing language. These, among others, include parallel 

variables, parallel functions, kernel functions and paral-
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lel for loops indicated by the parfor keyword. There are 

also some target language specific constructs and func-

tions (in this case related to OpenCL). 

4.1 Parallel Variables 

OpenCL code can be executed on a host CPU as well 

as on GPUs whereas CUDA code executes only on 

GPUs. Since the OpenCL and CUDA enabled GPUs 

use their own local (different from CPU) memory for 

execution, all necessary data should be copied to the 

specific device's memory. Parallel variables are allocat-

ed on the specific device memory instead of the host 

CPU. An example is shown below: 

function parvar 

protected 

  Integer m = 1000;       // Host Scalar 

  Integer A[m,m];         // Host Matrix 

  Integer B[m,m];         // Host Matrix 

// global and local device memories 

  parglobal Integer pm;   // Global Scalar 

  parglobal Integer pA[m,m];// Glob Matrix 

  parglobal Integer pB[m,m];// Glob Matrix 

  parlocal  Integer pn;    // Local Scalar 

  parlocal  Integer pS[m]; // Local Array 

end parvar; 

The first two matrices A and B are allocated in normal 

host memory. The next two matrices pA and pB are 

allocated on the global memory space of the OpenCL 

device to be used for execution. These global variables 

can be initialized from normal or host variables. The 

last array pS is allocated in the local memory space of 

each processor on the OpenCL device. These variables 

are shared between threads in a single work-group and 

cannot be initialized from hast variables. 

Copying of data between the host memory and the 

device memory used for parallel execution is as simple 

as assigning the variables to each other. The compiler 

and the runtime system handle the details of the opera-

tion. The assignments below are all valid in the func-

tion given above 

 Normal assignment - A := B  

 Copy from host memory to parallel execution de-

vice memory - pA := A 

 Copy from parallel execution device memory to 

host memory - B := pB 

 Copy from device memory to other device memory 

– pA := pB 

Modelica parallel arrays are passed to functions on-

ly by reference. This is done to reduce the rather expen-

sive copy operations. 

4.2 Parallel Functions 

ParModelica parallel functions correspond to OpenCL 

functions defined in kernel files or to CUDA device 

functions. These are functions available for distributed 

(parallel) independent execution in each thread execut-

ing on the parallel device. For example, if a parallel 

array has been distributed with one element in each 

thread, a parallel function may operate locally in paral-

lel on each element. However, unlike kernel functions, 

parallel functions cannot be called from serial code in 

normal Modelica functions on the host computer just as 

parallel OpenCL functions are not allowed to be called 

from serial C code on the host. Parallel functions have 

the following constraints, primarily since they are as-

sumed to be called within a parallel context in work-

items: 

 Parallel function bodies may not contain parfor-

loops. The reason is that the kernel containing the 

parallel functions is already distributed on each 

thread. 

 Explicitly declared parallel variables are not al-

lowed since execution is already taking place on the 

parallel device. 

 All memory allocation will be on the parallel de-

vice's memory.  

 Nested parallelism as in NestStepModelica [10] is 

not supported by this implementation. 

 Called functions must be parallel functions or sup-

ported built-in functions since execution is on the 

parallel device. 

 Parallel functions can only be called from the body 

of a parfor-loop, from parallel functions, or from 

kernel functions. 

Parallel functions in ParModelica are defined in the 

same way as normal Modelica functions, except that 

they are preceded by the parallel keyword as in the 

multiply function below: 

parallel function multiply 

  input parglobal Integer a; 

  input parlocal Integer b; 

  output parprivate Integer c;  // same as 

output Integer c; 

algorithm 

   c := a * b; 

end multiply; 

4.3 Kernel Functions 

ParModelica kernel functions correspond to OpenCL 

kernel functions [14] or CUDA global functions [16]. 

They are simply functions compiled to execute on an 

OpenCL parallel device, typically a GPU. ParModelica 

kernel functions are allowed to have several return- or 

output variables unlike their OpenCL or CUDA coun-

terparts. They can also allocate memory in the global 

address space. Kernel functions can be called from se-

rial host code, and are executed by each thread in the 
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launch of the kernel. Kernels functions share the first 

three constraints stated above for parallel functions. 

However, unlike parallel functions, kernel functions 

cannot be called from the body of a parfor-loop or from 

other kernel functions. 

Kernel functions in ParModelica are defined in the 

same way as normal Modelica functions, except that 

they are preceded by the kernel keyword. An example 

usage of kernel functions is shown by the kernel func-

tion arrayElemtWiseMult. The thread id function 

oclGetGlobalId() (see Section 4.5) returns the integer 

id of a work-item in the first dimension of a work 

group. 

kernel function arrayElemWiseMultiply 

  input Integer m; 

  input Integer A[m]; 

  input Integer B[m]; 

  output Integer C[m]; 

protected 

  Integer id; 

algorithm 

  id := oclGetGlobalId(1); 

  // calling the parallel function 

multiply is OK from kernel functions 

  C[id] := multiply(A[id],B[id]);  // 

multiply can be replaced by A[id]*B[id] 

end arrayElemWiseMultiply; 

4.4 Parallel For Loop: parfor 

The iterations of a ParModelica parfor-loop are execut-

ed without any specific order in parallel and inde-

pendently by multiple threads. The iterations of a par-

for-loop are equally distributed among available pro-

cessing units. If the range of the iteration is smaller 

than or equal to the number of threads the parallel de-

vice supports, each iteration will be done by a separate 

thread. If the number of iterations is larger than the 

number of threads available, some threads might per-

form more than one iteration. In future enhancements 

parfor will be given the extra feature of specifying the 

desired number of threads explicitly instead of auto-

matically launching threads as described above. An 

example of using the parfor-loop is shown below: 

// Matrix multiplication using parfor loop  

parfor i in 1:m loop 

  for j in 1:pm loop 

    ptemp := 0; 

    for h in 1:pm loop // calling the  

    // parallel function multiply is OK 

    // from parfor-loops 

      ptemp := multiply(pA[i,h], pB[h,j]) 

               + ptemp;  

    end for; 

    pC[i,j] := ptemp;  

  end for; 

end parfor; 

ParModelica parallel for loops, compared to normal 

Modelica for loops, have some additional constraints: 

 All variable references in the loop body must be to 

parallel variables. 

 Iterations should not be dependent on other itera-

tions i.e. no loop-carried dependencies. 

 All function calls in the body should be to parallel 

functions or supported built-in functions only. 

4.5 Executing User-written OpenCL Code 

from ParModelica. 

There are also some additional ParModelica features 

available for directly compiling and executing user-

written OpenCL code: 

 oclbuild(String) takes a name of an OpenCL source 

file and builds it. It returns an OpenCL program 

object which can be used later. 

 oclkernel(oclprogram, String) takes a previously 

built OpenCL program and create the kernel speci-

fied by the second argument. It returns an OpenCL 

kernel object which can be used later. 

 oclsetargs(oclkernel,...) takes a previously created 

kernel object variable and a variable number of ar-

guments and sets each argument to its correspond-

ing one in the kernel definition. 

 oclexecute(oclkernel) executes the specified kernel. 

All of the above operations are synchronous in the 

OpenCL jargon. They will return only when the speci-

fied operation is completed. Further functionality is 

planned to be added to these functions to provide better 

control over execution. 

4.6 Synchronization and Thread Management 

All OpenCL work-item functions [20] are available in 

ParModelica. They perform the same operations and 

have the “same” types and number of arguments. How-

ever, there are two main differences: 

  Thread/work-item index ids start from 1 in Par-

Modelica, whereas the OpenCL C  implementation 

counts from 0. 

  Array dimensions start from 1 in Modelica and 

from 0 in OpenCL and C. 

For example oclGetGlobalId(1) call in the above 

arrayElemWiseMultiply will return the integer ID of 

a work-item or thread in the first dimension of a work 

group. The first thread gets an ID of 1. The OpenCL C 

call for the same operation would be 

ocl_get_global_id(0) with the first thread obtain-

ing an ID of 0. 
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In addition to the above features, special built-in 

functions for building user written OpenCL code di-

rectly from source code, creating a kernel, setting ar-

guments to kernel and execution of kernels are also 

available. In addition parallel versions of some built-in 

algorithm functions are also available. 

5 Benchmarking and Evaluation 

To be able to evaluate the relative performance and 

behavior of the new language extensions described in 

Section 4, performing systematic benchmarking on a 

set of appropriate Modelica models is required. For this 

purpose we have constructed a benchmark test suite 

containing some models that represent heavy and high-

performance computation, relevant for simulation on 

parallel architectures. 

5.1 The MPAR Benchmark Suite 

The MPAR benchmark test suite contains seven differ-

ent algorithms from well-known benchmark applica-

tions such as the LINear equations software PACKage 

(LINPACK) [21], and Heat Conduction [23]. These 

benchmarks have been collected and implemented as 

algorithmic time-independent Modelica models.  

The algorithms implemented in this suite involve ra-

ther large computations and impose well defined work-

loads on the OpenModelica compiler and the run-time 

system. Moreover, they include different kinds of for-

loops and function calls which provide parallelism for 

domain and task decomposition. For space reasons we 

have provided results for only three models here.  

Time measurements have been performed of both 

sequential and parallel implementations of three mod-

els: Matrix Multiplication, Eigen value computation, 

and Stationary Heat Conduction, on both CPU and 

GPU architectures. For executing sequential codes gen-

erated by the standard sequential OpenModelica com-

piler we have used the Intel Xeon E5520 CPU [24] 

which has 16 cores, each with 2.27 GHz clock frequen-

cy. For executing generated code by our new OpenCL 

based parallel code generator, we have used the same 

CPU as well as the NVIDIA Fermi-Tesla M2050 GPU 

[25].  

5.2 Measurements 

In this section we present the result of measurements 

for simulating three models from the implemented 

benchmark suite. On each hardware configuration all 

simulations are performed five times with start time 

0.0, stop time of 0.2 seconds and 0.2 seconds time step, 

measuring the average simulation time using the 

clock_gettime() function from the C standard li-

brary. This function is called once when the simulation 

loop starts and once when the simulation loop finishes. 

The difference between the returned values gives the 

simulation time. 

All benchmarks have been simulated on both the In-

tel Xeon E5520 CPU (16 cores) and the NVIDIA Fer-

mi-Tesla M2050 GPU (448 cores). 

5.3 Simulation Results 

The Matrix Multiplication model (Appendix A) pro-

duces an M×K matrix C from multiplying an M×N ma-

trix A by an N×K matrix B. This model presents a very 

large level of data-parallelism for which a considerable 

speedup has been achieved as a result of parallel simu-

lation of this model on parallel platforms. The simula-

tion results are illustrated in Figure 5 and Figure 6. The 

obtained speedup of matrix multiplication using kernel 

functions is as follows compared to the sequential algo-

rithm on Intel Xeon E5520 CPU: 

 Intel 16-core CPU  – speedup 26 

 NVIDIA 448-core GPU – speedup 115 

 

Figure 5. Speedup for matrix multiplication, Intel 16-core 

CPU and Nvidia 448 core GPU. 

The measured matrix multiplication model simulation 

times can be found in Figure 6. 

 

 

Figure 6. Simulation time for matrix multiplication, Intel 

1-core, 16-core CPU, NVidia 448 core GPU. 

The second benchmark model performs Eigen-value 

computation, with the following speedups: 

 Intel 16-core CPU  – speedup 3 
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 NVIDIA 448-core GPU – speedup 48 

 

Figure 7. Speedup for Eigen value computation as a 

function of model array size, for Intel 16-core CPU and 

NVIDIA 448 core GPU, compared to the sequential 

algorithm on Intel Xeon E5520 CPU. 

The measured simulation times for the Eigen-value 

model are shown in Figure 8. 

 

Figure 8. Simulation time for Eigen-value computation as 

a function of model array size, for Intel 1-core CPU, 16-

core CPU, and NVIDIA 448 core GPU. 

The third benchmark model computes stationary heat 

conduction, with the following speedups: 

 Intel 16-core CPU  – speedup 7 

 NVIDIA 448-core GPU – speedup 22 

 

Figure 9. Speedup for the heat conduction model as a 

function of model size parameter M, Intel 16-core CPU 

and Nvidia 448 core GPU, compared to sequential 

algorithm on Intel Xeon E5520 CPU. 

The measured simulation times for the stationary heat 

conduction model are shown in Figure 10. 

 

Figure 10. Simulation time (seconds) for heat conduction 

model as a function of model size parameter M, for 1-core 

CPU, 16-core CPU, and 448 core GPU. 

According to the results of our measurements illustrat-

ed in Figure 5, Figure 7, and Figure 9, absolute 

speedups of 114, 48, and 22 respectively were achieved 

when running generated ParModelica OpenCL code on 

the Fermi-Tesla M2050 GPU compared to serial code 

on the Intel Xeon E5520 CPU with the largest data siz-

es.  

It should be noted that when the problem size is not 

very large the sequential execution has better perfor-

mance than the parallel execution. This is not surpris-

ing since for executing even a simple code on OpenCL 

devices it is required to create an OpenCL context with-

in those devices, allocate OpenCL memory objects, 

transfer input data from host to those memory objects, 

perform computations, and finally transfer back the 

result to the host. Consequently, performing all these 

operations normally takes more time compared to the 

sequential execution when the problem size is small. 

It can also be seen that, as the sizes of the models 

increase, the simulations get better relative performance 

on the GPU compared to multi-core CPU. Thus, to ful-

ly utilize the power of parallelism using GPUs it is re-

quired to have large regular data structures which can 

be operated on simultaneously by being decomposed to 

all blocks and threads available on GPU. Otherwise, 

executing parallel codes on a multi-core CPU would be 

a better choice than a GPU to achieve more efficiency 

and speedup. 

6 Guidelines for Using the New Par-

allel Language Constructs 

The most important task in all approaches regarding 

parallel code generation is to provide an appropriate 

way for analyzing and finding parallelism in sequential 

codes. In automatic parallelization approaches, the 

whole burden of this task is on the compiler and tool 

developer. However, in explicit parallelization ap-

proaches as in this paper, it is the responsibility of the 

modeler to analyze the source code and define which 

1,02 1,99 2,24 2,32 2,51 2,75 0,71 2,27 
6,68 

16,95 

33,25 

47,71 

256 512 1024 2048 4096 8192

Array size 

Speedup 

CPU E5520 GPU M2050

128 256 512 1024 2048 4096 8192

CPU E5520   (Serial) 1,543 5,116 16,7 52,462 147,411 363,114 574,057

CPU E5520   (Parallel) 3,049 5,034 8,385 23,413 63,419 144,747 208,789

GPU M2050 (Parallel) 7,188 7,176 7,373 7,853 8,695 10,922 12,032

1

2

4

8

16

32

64

128

256

512

1024

Si
m

u
la

ti
o

n
 T

im
e

 (
se

co
n

d
) 

2,04 
4,21 

5,85 6,23 6,41 

0,22 0,87 
3,32 

10,1 

22,46 

128 256 512 1024 2048

Parameter M (Matrix size MxM) 

Speedup 

CPU E5520 GPU M2050

128 256 512 
102

4 
204

8 

CPU E5520   (Serial) 1,958 7,903 32,104 122,754 487,342 

CPU E5520   (Parallel) 0,959 1,875 5,488 19,711 76,077 

GPU M2050 (Parallel) 8,704 9,048 9,67 12,153 21,694 

0,5 

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

Si
m

u
la

ti
o

n
 T

im
e 

(s
ec

o
n

d
) 

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core … 

 

400 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393 



                       

parts of the code are more appropriate to be explicitly 

parallelized. This requires a good understanding of the 

concepts of parallelism to avoid inefficient and incor-

rect generated code. In addition, it is necessary to know 

the constraints and limitations involved with using ex-

plicit parallel language constructs to avoid compile 

time errors. Therefore we give some advice on how to 

use the ParModelica language extensions to parallelize 

Modelica models efficiently: 

 Try to declare parallel variables as well as copy as-

signments among normal and parallel variables as 

less as possible since the costs of data transfers from 

host to devices and vice versa are very expensive. 

 In order to minimize the number of parallel varia-

bles as well as data transfers between host and de-

vices, it is better not to convert forloops with few it-

erations over simple operations to parallel for-loops 

(parfor-loops). 

 It is not always useful to have parallel variables and 

parfor-loops in the body of a normal for-loop which 

has many iterations. Especially in cases where there 

are many copy assignments among normal and par-

allel variables. 

 Although it is possible to declare parallel variables 

and also parfor-loops in a function, there are no ad-

vantages when there are many calls to the function 

(especially in the body of a big for-loop). This will 

increase the number of memory allocations for par-

allel variables as well as the number of expensive 

copies required to transfer data between host and 

devices. 

 Do not directly convert a for-loop to a parfor-loop 

when the result of each iteration depends on other 

iterations. In this case, although the compiler will 

correctly generate parallel code for the loop, the re-

sult of the computation may be incorrect. 

 Use a parfor-loop in situations where the loop has 

many independent iterations and each iteration takes 

a long time to be completed. 

 Try to parallelize models using kernel functions as 

much as possible rather than using parfor-loops. 

This will enable you to explicitly specify the desired 

number of threads and work-groups to get the best 

performance. 

 If the global work size (total number of threads to 

be run in parallel) and the local work size (total 

number of threads in each work-group) need to be 

specified explicitly, then the following points 

should be considered. First, the work-group size 

(local size) should not be zero, and also it should 

not exceed the maximum work-group size supported 

by the parallel device. Second, the local size should 

be less or equal than the global-size. Third, the 

global size should be evenly divisible by the local 

size. 

 The current implementation of OpenCL does not 

support recursive functions; therefore it is not pos-

sible to declare a recursive function as a parallel 

function. 

7 Conclusions 

New multi-core CPU and GPU architectures promise 

high computational power at a low cost if suitable 

computational algorithms can be developed. The 

OpenCL C-based parallel programming model provides 

a way of writing portable parallel algorithms that per-

form well on a number of multi-core architectures. 

However, the OpenCL programming model is rather 

low-level and error-prone to use and intended for paral-

lel programming specialists. 

This paper presents the ParModelica algorithmic 

language extension to the high-level Modelica model-

ing language together with a prototype implementation 

in the OpenModelica compiler. This makes it possible 

for the Modelica modeler to directly write efficient par-

allel algorithms in Modelica which are automatically 

compiled to efficient low-level OpenCL code. A 

benchmark suite called MPAR has been developed to 

evaluate the prototype. Good speedups have been ob-

tained for large problem sizes of matrix multiplication, 

Eigen value computation, and stationary heat condition. 

Future work includes integration of the ParModelica 

explicit parallel programming approach with automatic 

and semi-automatic approaches for compilation of 

equation-based Modelica models to parallel code. Au-

totuning could be applied to further increase the per-

formance and automatically adapt it to varying problem 

configurations. Some of the ParModelica code needed 

to specify kernel functions could be automatically gen-

erated. 
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Appendix A. Serial Matrix Multiply 
 

model MatrixMultiplication 

  parameter Integer m=256 ,n=256 ,k =256; 

  Real result ; 

algorithm 

  result := mainF (m,n,k); 

end MatrixMultiplication ; 

 

function mainF 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real result ; 

protected  

  Real A[m,n]; 

  Real B[n,k]; 

  Real C[m,k]; 

algorithm 

   // initialize matrix A, and B 

  (A,B) := initialize (m,n,k); 

   // multiply matrices A and B 

  C := matrixMultiply (m,n,k,A,B); 

  // only one item is returned to speed up 

  // computation 

  result := C[m,k]; 

end mainF; 

 

function initialize 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real A[m,n]; 

  output Real B[n,k]; 

algorithm 

  for i in 1:m loop 

    for j in 1:n loop 

      A[i,j] := j; 

    end for; 

  end for; 

  for j in 1:n loop 

    for h in 1:k loop 

      B[j,h] := h; 

    end for; 

  end for; 

end initialize ; 

 

function matrixMultiply 

  input Integer m; 

  input Integer p; 

  input Integer n; 

  input Real A[m,p]; 

  input Real B[p,n]; 

  output Real C[m,n]; 

  Real localtmp ; 

algorithm 

  for i in 1:m loop 

    for j in 1:n loop 

      localtmp := 0; 

      for k in 1:p loop 

        localtmp := localtmp +(A[i,k]* 

                    B[k,j]); 

      end for; 

      C[i,j] := localtmp ; 

    end for; 

  end for; 

end matrixMultiply; 

 

Appendix B. Parallel Matrix-Matrix 

Multiplication with parfor and Kernel 

functions 
 

model MatrixMultiplicationP 

  parameter Integer m=32,n=32,k=32; 

  Real result; 

algorithm 

  result := mainF(m,n,k); 

end MatrixMultiplicationP ; 

 

function mainF 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real result ; 

protected    

  Real C[m,k]; 

  parglobal Real pA[m,n]; 

  parglobal Real pB[n,k]; 

  parglobal Real pC[m,k]; 

  parglobal Integer pm; 

  parglobal Integer pn; 

  parglobal Integer pk; 

   // the total number of global threads  

   // executing in parallel in the kernel 

  Integer globalSize [2] = {m,k}; 

   // the total number of local threads  

   // in parallel in each workgroup 

  Integer localSize [2] = {16 ,16}; 

algorithm 

  // copy from host to device 

  pm := m; 

  pn := n; 

  pk := k; 

  (pA ,pB) := initialize(m,n,k,pn ,pk); 

 

  // specify the number of threads and 

  // workgroups 

  // to be used for a kernel function 

  // execution 

  oclSetNumThreads(globalSize, localSize); 

  pC := matrixMultiply(pn ,pA ,pB ); 

 

  // copy matrix from device to host  

  // and resturn result 

  C := pC; 

  result := C[m,k]; 

 

  // set the number of threads to  

  // the available number 

  // supported by device 

  oclSetNumThreads(0); 

end mainF ; 

 

 

function initialize 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  input parglobal Integer pn;     

  input parglobal Integer pk; 

  output parglobal Real pA[m,n]; 

  output parglobal Real pB[n,k];         

algorithm 

Session 3C: Language and Compilation Concepts I 

DOI Proceedings of the 9th International Modelica Conference    403 
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany   



                       

  parfor i in 1:m loop 

    for j in 1: pn loop 

      pA[i,j] := j; 

    end for; 

  end parfor; 

  parfor j in 1:n loop 

    for h in 1: pk loop 

      pB[j,h] := h; 

    end for; 

  end parfor ; 

end initialize ; 

 

parkernel function matrixmultiply 

  input parglobal Integer pn; 

  input parglobal Real pA [: ,:]; 

  input parglobal Real pB [: ,:]; 

  output parglobal Real pC[size(pA,1), 

size(pB,2)]; 

protected   

  Real plocaltmp ; 

  Integer i,j; 

algorithm 

  // Returns unique global thread Id value 

  // for first and second dimension 

  i := oclGetGlobalId (1); 

  j := oclGetGlobalId (2); 

  plocaltmp := 0; 

  for h in 1: pn loop 

    plocaltmp := plocaltmp + (pA[i,h] *  

                 pB[h,j]); 

  end for; 

  pC[i,j] := plocaltmp; 

end matrixmultiply; 
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