

A Data-Parallel Algorithmic Modelica Extension for Efficient

 Execution on Multi-Core Platforms

Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritzson, Kristian Stavåker

Department of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden

{mahder.gebremedin, peter.fritzson, Kristian.stavaker}@liu.se, afshe586@student.liu.se

Abstract

New multi-core CPU and GPU architectures promise

high computational power at a low cost if suitable

computational algorithms can be developed. However,

parallel programming for such architectures is usually

non-portable, low-level and error-prone. To make the

computational power of new multi-core architectures

more easily available to Modelica modelers, we have

developed the ParModelica algorithmic language ex-

tension to the high-level Modelica modeling language,

together with a prototype implementation in the

OpenModelica framework. This enables the Modelica

modeler to express parallel algorithms directly at the

Modelica language level. The generated code is porta-

ble between several multi-core architectures since it is

based on the OpenCL programming model. The im-

plementation has been evaluated on a benchmark suite

containing models with matrix multiplication, Eigen

value computation, and stationary heat conduction.

Good speedups were obtained for large problem sizes

on both multi-core CPUs and GPUs. To our

knowledge, this is the first high-performing portable

explicit parallel programming extension to Modelica.

Keywords: Parallel, Simulation, Benchmarking,

Modelica, Compiler, GPU, OpenCL, Multi-Core

1 Introduction

Models of large industrial systems are becoming in-

creasingly complex, causing long computation time for

simulation. This makes is attractive to investigate

methods to use modern multi-core architectures to

speedup computations.

Efficient parallel execution of Modelica models has

been a research goal of our group for a long time [4],

[5], [6], [7], involving improvements both in the com-

pilation process and in the run-time system for parallel

execution. Our previous work on compilation of data-

parallel models, [7] and [8], has primarily addressed

compilation of purely equation-based Modelica models

for simulation on NVIDIA Graphic Processing Units

(GPUs). Several parallel architectures have been target-

ed, such as standard Intel multi-core CPUs, IBM Cell

B.E, and NVIDIA GPUs. All the implementation work

has been done in the OpenModelica compiler frame-

work [2], which is an open-source implementation of a

Modelica compiler, simulator, and development envi-

ronment. Related research on parallel numeric solvers

can for example be found in [9].

The work presented in this paper presents an algo-

rithmic Modelica language extension called ParModeli-

ca for efficient portable explicit parallel Modelica pro-

gramming. Portability is achieved based on the

OpenCL [14] standard which is available on several

multi-core architectures. ParModelica is evaluated us-

ing a benchmark test suite called Modelica PARallel

benchmark suite (MPAR) which makes use of these

language extensions and includes models which repre-

sent heavy computations.

This paper is organized as follows. Section 2 gives a

general introduction to Modelica simulation on parallel

architectures. Section 3 gives an overview of GPUs,

CUDA and OpenCL, whereas the new parallel Modeli-

ca language extensions are presented in Section 4. Sec-

tion 5 briefly describes measurements using the parallel

benchmark test suite. Finally, Section 6 gives pro-

gramming guidelines to use ParModelica, and Section 7

presents conclusions and future work.

2 Parallel Simulation of Modelica

Models on Multi-Core Computers

The process of compiling and simulating Modelica

models to sequential code is described e.g. in [3] and

[12]. The handling of equations is rather complex and

involves symbolic index reduction, topological sorting

according to the causal dependencies between the equa-

tions, conversion into assignment statement form, etc.

Simulation corresponds to "solving" the compiled

DOI Proceedings of the 9th International Modelica Conference 393
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

equation system with respect to time using a numerical

integration method.

Compiling Modelica models for efficient parallel

simulation on multi-core architectures requires addi-

tional methods compared to the typical approaches de-

scribed in [3] and [12]. The parallel methods can be

roughly divided into the following three groups:

 Automatic parallelization of Modelica models. Sev-

eral approaches have been investigated: centralized

solver approach, distributed solver approach and

compilation of unexpanded array equations. With

the first approach the solver is run on one core and

in each time-step the computation of the equation

system is done in parallel over several cores [4]. In

the second approach the solver and the equation sys-

tem are distributed across several cores [5]. With

the third approach Modelica models with array

equations are compiled unexpanded and simulated

on multi-core architectures.

 Coarse-grained explicit parallelization using com-

ponents. Components of the model are simulated in

parallel partly de-coupled using time delays be-

tween the different components, see [11] for a

summary. A different solver, with different time

step, etc., can be used for each component. A relat-

ed approach has been used in the xMOD tool [26].

 Explicit parallel programming language constructs.

This approach is explored in the NestStepModelica

prototype [10] and in this paper with the ParModeli-

ca language extension. Parallel extensions have

been developed for other languages, e.g. parfor loop

and gpu arrays in Matlab, Visual C++ parallel_for,

Mathematica parallelDo, etc.

3 GPU Architectures, CUDA, and

OpenCL

Graphics Processing Units (GPUs) have recently be-

come increasingly programmable and applicable to

general purpose numeric computing. The theoretical

processing power of GPUs has in recent years far sur-

passed that of CPUs due to the highly parallel compu-

ting approach of GPUs.

However, to get good performance, GPU architec-

tures should be used for simulation of models of a regu-

lar structure with large numbers of similar data objects.

The computations related to each data object can then

be executed in parallel, one or more data objects on

each core, so-called data-parallel computing. It is also

very important to use the GPU memory hierarchy ef-

fectively in order to get good performance.

In Section 3.1 the NVIDIA GPU with its CUDA

programming model is presented as an influential ex-

ample of GPU architecture, followed by the portable

OpenCL parallel programming model in Section 3.2.

3.1 NVIDIA GPU CUDA – Compute Unified

Device Architecture

An important concept in NVIDIA CUDA (Computer

Unified Device Architecture) for GPU programming is

the distinction between host and device. The host is

what executes normal programs, and the device works

as a coprocessor to the host which runs CUDA threads

by instruction from the host. This typically means that a

CPU is the host and a GPU is the device, but it is also

possible to debug CUDA programs by using the CPU

as both host and device. The host and the device are

assumed to have their own separate address spaces, the

host memory and the device memory. The host can use

the CUDA runtime API to control the device, for ex-

ample to allocate memory on the device and to transfer

memory to and from the device.

Figure 1. Simplified schematic of NVIDIA GPU

architecture, consisting of a set of Streaming

Multiprocessors (SM), each containing a number of Scalar

Processors (SP) with fast private memory and on-ship

local shared memory. The GPU also has off-chip DRAM.

The building block of the NVIDIA CUDA hardware

architecture is the Streaming Multiprocessor (SM). In

the NVIDIA Fermi-Tesla M2050 GPU, each SM con-

tains 32 Scalar Processors (SPs). The entire GPU has

14 such SMs totaling to 448 SPs, as well as some off-

chip DRAM memory, see Figure 1. This gives a scala-

ble architecture where the performance of the GPU can

be varied by having more or fewer SMs.

To be able to take advantage of this architecture a

program meant to run on the GPU, known as a kernel,

needs to be massively multi-threaded. A kernel is just a

C-function meant to execute on the GPU. When a ker-

nel is executed on the GPU it is divided into thread

blocks, where each thread block contains an equal

number of threads. These thread blocks are automati-

cally distributed among the SMs, so a programmer

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

394 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

need not consider the number of SMs a certain GPU

has. All threads execute one common instruction at a

time. If any threads take divergent execution paths,

then each of these paths will be executed separately,

and the threads will then converge again when all paths

have been executed. This means that some SPs will be

idle if the thread executions diverge. It is thus im-

portant that all threads agree on an execution path for

optimal performance.

This architecture is similar to the Single Instruction,

Multiple Data (SIMD) architecture that vector proces-

sors use, and that most modern general-purpose CPUs

have limited capabilities for too. NVIDIA call this ar-

chitecture Single Instruction, Multiple Thread (SIMT)

instead, the difference being that each thread can exe-

cute independently, although at the cost of reduced per-

formance. It is also possible to regard each SM as a

separate processor, which enables Multiple Instruc-

tions, Multiple Data (MIMD) parallelism. Using only

MIMD parallelism will not make it possible to take full

advantage of a GPU’s power, since each SM is a SIMD

processor. To summarize:

 Streaming Multiprocessors (SM) can work with dif-

ferent code, performing different operations with

entirely different data (MIMD execution, Multiple

Instruction Multiple Data).

 All Scalar processors (SP) in one streaming multi-

processor execute the same instruction at the same

time but work on different data (SIMT/SIMD exe-

cution, Single Instruction Multiple Data).

3.1.1 NVIDIA GPU Memory Hierarchy

As can be seen in Figure 1 there are several different

types of memory in the CUDA hardware architecture.

At the lowest level each SP has a set of registers, the

number depending on the GPU’s capabilities. These

registers are shared between all threads allocated to a

SM, so the number of thread blocks that a SM can have

active at the same time is limited by the register usage

of each thread. Accessing a register typically requires

no extra clock cycles per instruction, except for some

special cases where delays may occur.

Besides the registers there is also the shared (local)

memory, which is shared by all SPs in a SM. The

shared memory is implemented as fast on-chip

memory, and accessing the shared memory is generally

as fast as accessing a register. Since the shared memory

is accessible to all threads in a block it allows the

threads to cooperate efficiently by giving them fast ac-

cess to the same data.

Most of the GPU memory is off-chip Dynamic

Random Access Memory (DRAM). The amount of off-

chip memory on modern graphics cards range from

several hundred megabytes to few gigabytes. The

DRAM memory is much slower than the on-chip mem-

ories, and is also the only memory that is accessible to

the host CPU, e.g. through DMA transfers. To summa-

rize:

 Each scalar processor (SP) has a set of fast registers.

(private memory)

 Each streaming multiprocessor (SM) has a small lo-

cal shared memory (48KB on Tesla M2050) with

relatively fast access.

 Each GPU device has a slower off-chip DRAM

(2GB on Tesla M2050) which is accessible from all

streaming multiprocessors and externally e.g. from

the CPU with DMA transfers.

3.2 OpenCL – the Open Computing Language

OpenCL [14] is the first open, free parallel computing

standard for cross-platform parallel programming of

modern processors including GPUs. The OpenCL pro-

gramming language is based on C99 with some exten-

sions for parallel execution management. By using

OpenCL it is possible to write parallel algorithms that

can be easily ported between multiple devices with

minimal or no changes to the source code.

The OpenCL framework consists of the OpenCL

programming language, API, libraries, and a runtime

system to support software development. The frame-

work can be divided into a hierarchy of models: Plat-

form Model, Memory model, Execution model, and

Programming model.

Figure 2. OpenCL platform architecture.

The OpenCL platform architecture in Figure 2 is simi-

lar to the NVIDIA CUDA architecture in Figure 1:

 Compute device – Graphics Processing Unit (GPU)

 Compute unit – Streaming Multiprocessor (SM)

 Processing element – Scalar Processor (SP)

 Work-item – thread

 Work-group – thread block

The memory hierarchy (Figure 3) is also very similar:

 Global memory – GPU off-chip DRAM memory

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 395
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 Constant memory – read-only cache of off-chip

memory

 Local memory – on-chip shared memory that can be

accessed by threads in the same SM

 Private memory – on-chip registers in the same

Figure 3. Memory hierarchy in the OpenCL memory

model, closely related to typical GPU architectures such

as NVIDIA.

The memory regions can be accessed in the following

way:

Memory Regions Access to Memory

Constant Memory All work-items in all work-groups

Local Memory All work-items in a work-group

Private Memory Private to a work-item

Global Memory All work-items in all work-groups

3.2.1 OpenCL Execution Model

The execution of an OpenCL program consists of two

parts, the host program which executes on the host and

the parallel OpenCL program, i.e., a collection of ker-

nels (also called kernel functions), which execute on

the OpenCL device. The host program manages the

execution of the OpenCL program.

Kernels are executed simultaneously by all threads

specified for the kernel execution. The number and

mapping of threads to Computing Units of the OpenCL

device is handled by the host program.

Each thread executing an instance of a kernel is

called a work-item. Each thread or work item has

unique id to help identify it. Work items can have addi-

tional id fields depending on the arrangement specified

by the host program.

Work-items can be arranged into work-groups. Each

work-group has a unique ID. Work-items are assigned

a unique local ID within a work-group so that a single

work-item can be uniquely identified by its global ID

or by a combination of its local ID and work-group ID.

Figure 4. OpenCL execution model, work-groups

depicted as groups of squares corresponding to work-

items. Each work-group can be referred to by a unique ID,

and each work-item by a unique local ID.

The work-items in a given work-group execute concur-

rently on the processing elements of a single compute

unit as depicted in Figure 4.

Several programming models can be mapped onto

this execution model. OpenCL explicitly supports two

of these models: primarily the data parallel program-

ming model, but also the task parallel programming

model

4 ParModelica: Extending Modelica

for Explicit Algorithmic Parallel

Programming

As mentioned in the introduction, the focus of the cur-

rent work is an extension (ParModelica) of the algo-

rithmic subset of Modelica for efficient explicit parallel

programming on highly data-parallel SPMD (Single

Program Multiple Data) architectures. The current

ParModelica implementation generates OpenCL [14]

code for parallel algorithms. OpenCL was selected in-

stead of CUDA [15] because of its portability between

several multi-core platforms. Generating OpenCL code

ensures that simulations can be run with parallel sup-

port on OpenCL enabled Graphics and Central Proces-

sor Units (GPUs and CPUs). This includes many multi-

core CPUs from [19] and Advanced Micro Devices

(AMD) [18] as well as a range of GPUs from NVIDIA

[17] and AMD [18].

As mentioned earlier most previous work regarding

parallel execution support in the OpenModelica com-

piler has been focused on automatic parallelization

where the burden of finding and analyzing parallelism

has been put on the compiler. In this work, however,

we have decided to leave this responsibility to the end

user programmer. The compiler provides additional

high level language constructs needed for explicitly

stating parallelism in the algorithmic part of the model-

ing language. These, among others, include parallel

variables, parallel functions, kernel functions and paral-

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

396 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

lel for loops indicated by the parfor keyword. There are

also some target language specific constructs and func-

tions (in this case related to OpenCL).

4.1 Parallel Variables

OpenCL code can be executed on a host CPU as well

as on GPUs whereas CUDA code executes only on

GPUs. Since the OpenCL and CUDA enabled GPUs

use their own local (different from CPU) memory for

execution, all necessary data should be copied to the

specific device's memory. Parallel variables are allocat-

ed on the specific device memory instead of the host

CPU. An example is shown below:

function parvar

protected

 Integer m = 1000; // Host Scalar

 Integer A[m,m]; // Host Matrix

 Integer B[m,m]; // Host Matrix

// global and local device memories

 parglobal Integer pm; // Global Scalar

 parglobal Integer pA[m,m];// Glob Matrix

 parglobal Integer pB[m,m];// Glob Matrix

 parlocal Integer pn; // Local Scalar

 parlocal Integer pS[m]; // Local Array

end parvar;

The first two matrices A and B are allocated in normal

host memory. The next two matrices pA and pB are

allocated on the global memory space of the OpenCL

device to be used for execution. These global variables

can be initialized from normal or host variables. The

last array pS is allocated in the local memory space of

each processor on the OpenCL device. These variables

are shared between threads in a single work-group and

cannot be initialized from hast variables.

Copying of data between the host memory and the

device memory used for parallel execution is as simple

as assigning the variables to each other. The compiler

and the runtime system handle the details of the opera-

tion. The assignments below are all valid in the func-

tion given above

 Normal assignment - A := B

 Copy from host memory to parallel execution de-

vice memory - pA := A

 Copy from parallel execution device memory to

host memory - B := pB

 Copy from device memory to other device memory

– pA := pB

Modelica parallel arrays are passed to functions on-

ly by reference. This is done to reduce the rather expen-

sive copy operations.

4.2 Parallel Functions

ParModelica parallel functions correspond to OpenCL

functions defined in kernel files or to CUDA device

functions. These are functions available for distributed

(parallel) independent execution in each thread execut-

ing on the parallel device. For example, if a parallel

array has been distributed with one element in each

thread, a parallel function may operate locally in paral-

lel on each element. However, unlike kernel functions,

parallel functions cannot be called from serial code in

normal Modelica functions on the host computer just as

parallel OpenCL functions are not allowed to be called

from serial C code on the host. Parallel functions have

the following constraints, primarily since they are as-

sumed to be called within a parallel context in work-

items:

 Parallel function bodies may not contain parfor-

loops. The reason is that the kernel containing the

parallel functions is already distributed on each

thread.

 Explicitly declared parallel variables are not al-

lowed since execution is already taking place on the

parallel device.

 All memory allocation will be on the parallel de-

vice's memory.

 Nested parallelism as in NestStepModelica [10] is

not supported by this implementation.

 Called functions must be parallel functions or sup-

ported built-in functions since execution is on the

parallel device.

 Parallel functions can only be called from the body

of a parfor-loop, from parallel functions, or from

kernel functions.

Parallel functions in ParModelica are defined in the

same way as normal Modelica functions, except that

they are preceded by the parallel keyword as in the

multiply function below:

parallel function multiply

 input parglobal Integer a;

 input parlocal Integer b;

 output parprivate Integer c; // same as

output Integer c;

algorithm

 c := a * b;

end multiply;

4.3 Kernel Functions

ParModelica kernel functions correspond to OpenCL

kernel functions [14] or CUDA global functions [16].

They are simply functions compiled to execute on an

OpenCL parallel device, typically a GPU. ParModelica

kernel functions are allowed to have several return- or

output variables unlike their OpenCL or CUDA coun-

terparts. They can also allocate memory in the global

address space. Kernel functions can be called from se-

rial host code, and are executed by each thread in the

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 397
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

launch of the kernel. Kernels functions share the first

three constraints stated above for parallel functions.

However, unlike parallel functions, kernel functions

cannot be called from the body of a parfor-loop or from

other kernel functions.

Kernel functions in ParModelica are defined in the

same way as normal Modelica functions, except that

they are preceded by the kernel keyword. An example

usage of kernel functions is shown by the kernel func-

tion arrayElemtWiseMult. The thread id function

oclGetGlobalId() (see Section 4.5) returns the integer

id of a work-item in the first dimension of a work

group.

kernel function arrayElemWiseMultiply

 input Integer m;

 input Integer A[m];

 input Integer B[m];

 output Integer C[m];

protected

 Integer id;

algorithm

 id := oclGetGlobalId(1);

 // calling the parallel function

multiply is OK from kernel functions

 C[id] := multiply(A[id],B[id]); //

multiply can be replaced by A[id]*B[id]

end arrayElemWiseMultiply;

4.4 Parallel For Loop: parfor

The iterations of a ParModelica parfor-loop are execut-

ed without any specific order in parallel and inde-

pendently by multiple threads. The iterations of a par-

for-loop are equally distributed among available pro-

cessing units. If the range of the iteration is smaller

than or equal to the number of threads the parallel de-

vice supports, each iteration will be done by a separate

thread. If the number of iterations is larger than the

number of threads available, some threads might per-

form more than one iteration. In future enhancements

parfor will be given the extra feature of specifying the

desired number of threads explicitly instead of auto-

matically launching threads as described above. An

example of using the parfor-loop is shown below:

// Matrix multiplication using parfor loop

parfor i in 1:m loop

 for j in 1:pm loop

 ptemp := 0;

 for h in 1:pm loop // calling the

 // parallel function multiply is OK

 // from parfor-loops

 ptemp := multiply(pA[i,h], pB[h,j])

 + ptemp;

 end for;

 pC[i,j] := ptemp;

 end for;

end parfor;

ParModelica parallel for loops, compared to normal

Modelica for loops, have some additional constraints:

 All variable references in the loop body must be to

parallel variables.

 Iterations should not be dependent on other itera-

tions i.e. no loop-carried dependencies.

 All function calls in the body should be to parallel

functions or supported built-in functions only.

4.5 Executing User-written OpenCL Code

from ParModelica.

There are also some additional ParModelica features

available for directly compiling and executing user-

written OpenCL code:

 oclbuild(String) takes a name of an OpenCL source

file and builds it. It returns an OpenCL program

object which can be used later.

 oclkernel(oclprogram, String) takes a previously

built OpenCL program and create the kernel speci-

fied by the second argument. It returns an OpenCL

kernel object which can be used later.

 oclsetargs(oclkernel,...) takes a previously created

kernel object variable and a variable number of ar-

guments and sets each argument to its correspond-

ing one in the kernel definition.

 oclexecute(oclkernel) executes the specified kernel.

All of the above operations are synchronous in the

OpenCL jargon. They will return only when the speci-

fied operation is completed. Further functionality is

planned to be added to these functions to provide better

control over execution.

4.6 Synchronization and Thread Management

All OpenCL work-item functions [20] are available in

ParModelica. They perform the same operations and

have the “same” types and number of arguments. How-

ever, there are two main differences:

 Thread/work-item index ids start from 1 in Par-

Modelica, whereas the OpenCL C implementation

counts from 0.

 Array dimensions start from 1 in Modelica and

from 0 in OpenCL and C.

For example oclGetGlobalId(1) call in the above

arrayElemWiseMultiply will return the integer ID of

a work-item or thread in the first dimension of a work

group. The first thread gets an ID of 1. The OpenCL C

call for the same operation would be

ocl_get_global_id(0) with the first thread obtain-

ing an ID of 0.

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

398 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

In addition to the above features, special built-in

functions for building user written OpenCL code di-

rectly from source code, creating a kernel, setting ar-

guments to kernel and execution of kernels are also

available. In addition parallel versions of some built-in

algorithm functions are also available.

5 Benchmarking and Evaluation

To be able to evaluate the relative performance and

behavior of the new language extensions described in

Section 4, performing systematic benchmarking on a

set of appropriate Modelica models is required. For this

purpose we have constructed a benchmark test suite

containing some models that represent heavy and high-

performance computation, relevant for simulation on

parallel architectures.

5.1 The MPAR Benchmark Suite

The MPAR benchmark test suite contains seven differ-

ent algorithms from well-known benchmark applica-

tions such as the LINear equations software PACKage

(LINPACK) [21], and Heat Conduction [23]. These

benchmarks have been collected and implemented as

algorithmic time-independent Modelica models.

The algorithms implemented in this suite involve ra-

ther large computations and impose well defined work-

loads on the OpenModelica compiler and the run-time

system. Moreover, they include different kinds of for-

loops and function calls which provide parallelism for

domain and task decomposition. For space reasons we

have provided results for only three models here.

Time measurements have been performed of both

sequential and parallel implementations of three mod-

els: Matrix Multiplication, Eigen value computation,

and Stationary Heat Conduction, on both CPU and

GPU architectures. For executing sequential codes gen-

erated by the standard sequential OpenModelica com-

piler we have used the Intel Xeon E5520 CPU [24]

which has 16 cores, each with 2.27 GHz clock frequen-

cy. For executing generated code by our new OpenCL

based parallel code generator, we have used the same

CPU as well as the NVIDIA Fermi-Tesla M2050 GPU

[25].

5.2 Measurements

In this section we present the result of measurements

for simulating three models from the implemented

benchmark suite. On each hardware configuration all

simulations are performed five times with start time

0.0, stop time of 0.2 seconds and 0.2 seconds time step,

measuring the average simulation time using the

clock_gettime() function from the C standard li-

brary. This function is called once when the simulation

loop starts and once when the simulation loop finishes.

The difference between the returned values gives the

simulation time.

All benchmarks have been simulated on both the In-

tel Xeon E5520 CPU (16 cores) and the NVIDIA Fer-

mi-Tesla M2050 GPU (448 cores).

5.3 Simulation Results

The Matrix Multiplication model (Appendix A) pro-

duces an M×K matrix C from multiplying an M×N ma-

trix A by an N×K matrix B. This model presents a very

large level of data-parallelism for which a considerable

speedup has been achieved as a result of parallel simu-

lation of this model on parallel platforms. The simula-

tion results are illustrated in Figure 5 and Figure 6. The

obtained speedup of matrix multiplication using kernel

functions is as follows compared to the sequential algo-

rithm on Intel Xeon E5520 CPU:

 Intel 16-core CPU – speedup 26

 NVIDIA 448-core GPU – speedup 115

Figure 5. Speedup for matrix multiplication, Intel 16-core

CPU and Nvidia 448 core GPU.

The measured matrix multiplication model simulation

times can be found in Figure 6.

Figure 6. Simulation time for matrix multiplication, Intel

1-core, 16-core CPU, NVidia 448 core GPU.

The second benchmark model performs Eigen-value

computation, with the following speedups:

 Intel 16-core CPU – speedup 3

4,36
13,41

24,76 26,34

0,61 4,61

35,95

114,67

64 128 256 512

Parameter M (Matrix sizes MxM)

Speedup

CPU E5520 GPU M2050

32 64 128 256 512

CPU E5520 (Serial) 0,093 0,741 5,875 58,426 465,234

CPU E5520 (Parallel) 0,137 0,17 0,438 2,36 17,66

GPU M2050 (Parallel) 1,215 1,217 1,274 1,625 4,057

0,0625
0,125

0,25
0,5

1
2
4
8

16
32
64

128
256
512

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
)

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 399
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 NVIDIA 448-core GPU – speedup 48

Figure 7. Speedup for Eigen value computation as a

function of model array size, for Intel 16-core CPU and

NVIDIA 448 core GPU, compared to the sequential

algorithm on Intel Xeon E5520 CPU.

The measured simulation times for the Eigen-value

model are shown in Figure 8.

Figure 8. Simulation time for Eigen-value computation as

a function of model array size, for Intel 1-core CPU, 16-

core CPU, and NVIDIA 448 core GPU.

The third benchmark model computes stationary heat

conduction, with the following speedups:

 Intel 16-core CPU – speedup 7

 NVIDIA 448-core GPU – speedup 22

Figure 9. Speedup for the heat conduction model as a

function of model size parameter M, Intel 16-core CPU

and Nvidia 448 core GPU, compared to sequential

algorithm on Intel Xeon E5520 CPU.

The measured simulation times for the stationary heat

conduction model are shown in Figure 10.

Figure 10. Simulation time (seconds) for heat conduction

model as a function of model size parameter M, for 1-core

CPU, 16-core CPU, and 448 core GPU.

According to the results of our measurements illustrat-

ed in Figure 5, Figure 7, and Figure 9, absolute

speedups of 114, 48, and 22 respectively were achieved

when running generated ParModelica OpenCL code on

the Fermi-Tesla M2050 GPU compared to serial code

on the Intel Xeon E5520 CPU with the largest data siz-

es.

It should be noted that when the problem size is not

very large the sequential execution has better perfor-

mance than the parallel execution. This is not surpris-

ing since for executing even a simple code on OpenCL

devices it is required to create an OpenCL context with-

in those devices, allocate OpenCL memory objects,

transfer input data from host to those memory objects,

perform computations, and finally transfer back the

result to the host. Consequently, performing all these

operations normally takes more time compared to the

sequential execution when the problem size is small.

It can also be seen that, as the sizes of the models

increase, the simulations get better relative performance

on the GPU compared to multi-core CPU. Thus, to ful-

ly utilize the power of parallelism using GPUs it is re-

quired to have large regular data structures which can

be operated on simultaneously by being decomposed to

all blocks and threads available on GPU. Otherwise,

executing parallel codes on a multi-core CPU would be

a better choice than a GPU to achieve more efficiency

and speedup.

6 Guidelines for Using the New Par-

allel Language Constructs

The most important task in all approaches regarding

parallel code generation is to provide an appropriate

way for analyzing and finding parallelism in sequential

codes. In automatic parallelization approaches, the

whole burden of this task is on the compiler and tool

developer. However, in explicit parallelization ap-

proaches as in this paper, it is the responsibility of the

modeler to analyze the source code and define which

1,02 1,99 2,24 2,32 2,51 2,75 0,71 2,27
6,68

16,95

33,25

47,71

256 512 1024 2048 4096 8192

Array size

Speedup

CPU E5520 GPU M2050

128 256 512 1024 2048 4096 8192

CPU E5520 (Serial) 1,543 5,116 16,7 52,462 147,411 363,114 574,057

CPU E5520 (Parallel) 3,049 5,034 8,385 23,413 63,419 144,747 208,789

GPU M2050 (Parallel) 7,188 7,176 7,373 7,853 8,695 10,922 12,032

1

2

4

8

16

32

64

128

256

512

1024

Si
m

u
la

ti
o

n
 T

im
e

 (
se

co
n

d
)

2,04
4,21

5,85 6,23 6,41

0,22 0,87
3,32

10,1

22,46

128 256 512 1024 2048

Parameter M (Matrix size MxM)

Speedup

CPU E5520 GPU M2050

128 256 512
102

4
204

8

CPU E5520 (Serial) 1,958 7,903 32,104 122,754 487,342

CPU E5520 (Parallel) 0,959 1,875 5,488 19,711 76,077

GPU M2050 (Parallel) 8,704 9,048 9,67 12,153 21,694

0,5

1

2

4

8

16

32

64

128

256

512

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
)

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

400 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

parts of the code are more appropriate to be explicitly

parallelized. This requires a good understanding of the

concepts of parallelism to avoid inefficient and incor-

rect generated code. In addition, it is necessary to know

the constraints and limitations involved with using ex-

plicit parallel language constructs to avoid compile

time errors. Therefore we give some advice on how to

use the ParModelica language extensions to parallelize

Modelica models efficiently:

 Try to declare parallel variables as well as copy as-

signments among normal and parallel variables as

less as possible since the costs of data transfers from

host to devices and vice versa are very expensive.

 In order to minimize the number of parallel varia-

bles as well as data transfers between host and de-

vices, it is better not to convert forloops with few it-

erations over simple operations to parallel for-loops

(parfor-loops).

 It is not always useful to have parallel variables and

parfor-loops in the body of a normal for-loop which

has many iterations. Especially in cases where there

are many copy assignments among normal and par-

allel variables.

 Although it is possible to declare parallel variables

and also parfor-loops in a function, there are no ad-

vantages when there are many calls to the function

(especially in the body of a big for-loop). This will

increase the number of memory allocations for par-

allel variables as well as the number of expensive

copies required to transfer data between host and

devices.

 Do not directly convert a for-loop to a parfor-loop

when the result of each iteration depends on other

iterations. In this case, although the compiler will

correctly generate parallel code for the loop, the re-

sult of the computation may be incorrect.

 Use a parfor-loop in situations where the loop has

many independent iterations and each iteration takes

a long time to be completed.

 Try to parallelize models using kernel functions as

much as possible rather than using parfor-loops.

This will enable you to explicitly specify the desired

number of threads and work-groups to get the best

performance.

 If the global work size (total number of threads to

be run in parallel) and the local work size (total

number of threads in each work-group) need to be

specified explicitly, then the following points

should be considered. First, the work-group size

(local size) should not be zero, and also it should

not exceed the maximum work-group size supported

by the parallel device. Second, the local size should

be less or equal than the global-size. Third, the

global size should be evenly divisible by the local

size.

 The current implementation of OpenCL does not

support recursive functions; therefore it is not pos-

sible to declare a recursive function as a parallel

function.

7 Conclusions

New multi-core CPU and GPU architectures promise

high computational power at a low cost if suitable

computational algorithms can be developed. The

OpenCL C-based parallel programming model provides

a way of writing portable parallel algorithms that per-

form well on a number of multi-core architectures.

However, the OpenCL programming model is rather

low-level and error-prone to use and intended for paral-

lel programming specialists.

This paper presents the ParModelica algorithmic

language extension to the high-level Modelica model-

ing language together with a prototype implementation

in the OpenModelica compiler. This makes it possible

for the Modelica modeler to directly write efficient par-

allel algorithms in Modelica which are automatically

compiled to efficient low-level OpenCL code. A

benchmark suite called MPAR has been developed to

evaluate the prototype. Good speedups have been ob-

tained for large problem sizes of matrix multiplication,

Eigen value computation, and stationary heat condition.

Future work includes integration of the ParModelica

explicit parallel programming approach with automatic

and semi-automatic approaches for compilation of

equation-based Modelica models to parallel code. Au-

totuning could be applied to further increase the per-

formance and automatically adapt it to varying problem

configurations. Some of the ParModelica code needed

to specify kernel functions could be automatically gen-

erated.

8 Acknowledgements

This work has been supported by Serc, by Elliit, by the

Swedish Strategic Research Foundation in the EDOp

and HIPo projects and by Vinnova in the RTSIM and

ITEA2 OPENPROD projects. The Open Source Mod-

elica Consortium supports the OpenModelica work.

Thanks to Per Östlund for contributions to Section 3.1.

References

[1] Modelica Association. The Modelica Language

Specification Version 3.2, March 24th 2010.

http://www.modelica.org. Modelica Association.

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 401
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

Modelica Standard Library 3.1. Aug. 2009.

http://www.modelica.org./

[2] Open Source Modelica Consortium. OpenModel-

ica System Documentation Version 1.8.1, April

2012. http://www.openmodelica.org/

[3] Peter Fritzson. Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1.

Wiley-IEEE Press, 2004.

[4] Peter Aronsson. Automatic Parallelization of

Equation-Based Simulation Programs, PhD the-

sis, Dissertation No. 1022, Linköping University,

2006.

[5] Håkan Lundvall. Automatic Parallelization using

Pipelining for Equation-Based Simulation Lan-

guages, Licentiate thesis No. 1381, Linköping

University, 2008.

[6] Håkan Lundvall, Kristian Stavåker, Peter

Fritzson, Christoph Kessler: Automatic Parallel-

ization of Simulation Code for Equation-based

Models with Software Pipelining and Measure-

ments on Three Platforms. MCC'08 Workshop,

Ronneby, Sweden, November 27-28, 2008.

[7] Per Östlund. Simulation of Modelica Models on

the CUDA Architecture. Master Thesis. LIU-

IDA/LITH-EX-A{09/062{SE. Linköping Univer-

sity, 2009.

[8] Kristian Stavåker, Peter Fritzson. Generation of

Simulation Code from Equation-Based Models

for Execution on CUDA-Enabled GPUs. MCC'10

Workshop, Gothenburg, Sweden, November 18-

19, 2010.

[9] Matthias Korch and Thomas Rauber. Scalable

parallel rk solvers for odes derived by the method

of lines. In Harald Kosch, Laszlo Böszörményi,

and Hermann Hellwagner, editors, Euro-Par, vol-

ume 2790 of Lecture Notes in Computer Science,

pages 830-839. Springer, 2003.

[10] Christoph Kessler and Peter Fritzson. NestStep-

Modelica – Mathematical Modeling and Bulk-

Synchronous Parallel Simulation. In Proc. of

PARA'06, Umeå, June 19-20, 2006. In Lecture

Notes of Computer Science (LNCS) Vol 4699, pp

1006-1015, Springer Verlag, 2006.

[11] Martin Sjölund, Robert Braun, Peter Fritzson and

Petter Krus. Towards Efficient Distributed Simu-

lation in Modelica using Transmission Line Mod-

eling. In Proceedings of the 3rd International

Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools, (EOOLT'2010),

Published by Linköping University Electronic

Press, www.ep.liu.se, In conjunction with MOD-

ELS’2010, Oslo, Norway, Oct 3, 2010.

[12] Francois Cellier and Ernesto Kofman. Continuous

System Simulation. Springer, 2006.

[13] Khronos Group, Open Standards for Media Au-

thoring and Acceleration, OpenCL 1.1, accessed

Sept 15, 2011. http://www.khronos.org/opencl/

[14] The OpenCL Specication, Version: 1.1, Docu-

ment Revision: 44, accessed June 30 2011.

http://www.khronos.org/registry/cl/specs/opencl-

1.1.pdf

[15] NVIDIA CUDA, accessed September 15 2011.

http://www.nvidia.com/object/cuda home

new.html

[16] NVIDIA CUDA programming guide, accessed 30

June 2011. http://developer.download.nvidia.com/

compute/cuda/4 0 rc2/toolkit/docs/CUDA C Pro-

gramming Guide.pdf

[17] OpenCL Programming Guide for the CUDA Ar-

chitecture, Appendix A, accessed June 30 2011.

http://developer.download.nvidia.com/compute/D

evZone/docs/html/OpenCL/doc/OpenCL Pro-

gramming Guide.pdf

[18] AMD OpenCL, System Requirements & Driver

Compatibility, accessed June 30 2011.

http://developer.amd.com/sdks/AMDAPPSDK/pa

ges/DriverCompatibility.aspx

[19] INTEL OpenCL, Technical Requirements, ac-

cessed June 30 2011.

http://software.intel.com/enus/articles/opencl-

release-notes/

[20] OpenCL Work-Item Built-In Functions, accessed

June 30 2011.

http://www.khronos.org/registry/cl/sdk/1.0/docs/

man/xhtml/workItemFunctions.html

[21] Jack J. Dongarra, J. Bunch, Cleve Moler, and G.

W. Stewart. LINPACK User's Guide. SIAM,

Philadelphia, PA, 1979.

[22] Ian N. Sneddon. Fourier Transforms. Dover Pub-

lications, 2010. ISBN-13: 978-0486685229.

[23] John H. Lienhard IV and John H. Lienhard V. A

Heat Transfer Textbook. Phlogiston Press Cam-

bridge, Massachusetts, U.S.A, 4th edition, 2011.

[24] Intel Xeon E5520 CPU Specifications, accessed

October 28 2011.

http://ark.intel.com/products/40200/Intel-Xeon-

Processor-E5520-(8M-Cache-2 26-GHz-5 86-

GTs-Intel-QPI)

[25] NVIDIA Tesla M2050 GPU Specifications, ac-

cessed June 30 2011.

http://www.nvidia.com/docs/IO/43395/BD-

05238-001 v03.pdf

[26] Cyril Faure. Real-time simulation of physical

models toward hardware-in-the-loop validation.

PhD Thesis. University of Paris East, October

2011.

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

402 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

http://www.nvidia.com/docs/IO/43395/BD-05238-001%20v03.pdf
http://www.nvidia.com/docs/IO/43395/BD-05238-001%20v03.pdf

Appendix A. Serial Matrix Multiply

model MatrixMultiplication

 parameter Integer m=256 ,n=256 ,k =256;

 Real result ;

algorithm

 result := mainF (m,n,k);

end MatrixMultiplication ;

function mainF

 input Integer m;

 input Integer n;

 input Integer k;

 output Real result ;

protected

 Real A[m,n];

 Real B[n,k];

 Real C[m,k];

algorithm

 // initialize matrix A, and B

 (A,B) := initialize (m,n,k);

 // multiply matrices A and B

 C := matrixMultiply (m,n,k,A,B);

 // only one item is returned to speed up

 // computation

 result := C[m,k];

end mainF;

function initialize

 input Integer m;

 input Integer n;

 input Integer k;

 output Real A[m,n];

 output Real B[n,k];

algorithm

 for i in 1:m loop

 for j in 1:n loop

 A[i,j] := j;

 end for;

 end for;

 for j in 1:n loop

 for h in 1:k loop

 B[j,h] := h;

 end for;

 end for;

end initialize ;

function matrixMultiply

 input Integer m;

 input Integer p;

 input Integer n;

 input Real A[m,p];

 input Real B[p,n];

 output Real C[m,n];

 Real localtmp ;

algorithm

 for i in 1:m loop

 for j in 1:n loop

 localtmp := 0;

 for k in 1:p loop

 localtmp := localtmp +(A[i,k]*

 B[k,j]);

 end for;

 C[i,j] := localtmp ;

 end for;

 end for;

end matrixMultiply;

Appendix B. Parallel Matrix-Matrix

Multiplication with parfor and Kernel

functions

model MatrixMultiplicationP

 parameter Integer m=32,n=32,k=32;

 Real result;

algorithm

 result := mainF(m,n,k);

end MatrixMultiplicationP ;

function mainF

 input Integer m;

 input Integer n;

 input Integer k;

 output Real result ;

protected

 Real C[m,k];

 parglobal Real pA[m,n];

 parglobal Real pB[n,k];

 parglobal Real pC[m,k];

 parglobal Integer pm;

 parglobal Integer pn;

 parglobal Integer pk;

 // the total number of global threads

 // executing in parallel in the kernel

 Integer globalSize [2] = {m,k};

 // the total number of local threads

 // in parallel in each workgroup

 Integer localSize [2] = {16 ,16};

algorithm

 // copy from host to device

 pm := m;

 pn := n;

 pk := k;

 (pA ,pB) := initialize(m,n,k,pn ,pk);

 // specify the number of threads and

 // workgroups

 // to be used for a kernel function

 // execution

 oclSetNumThreads(globalSize, localSize);

 pC := matrixMultiply(pn ,pA ,pB);

 // copy matrix from device to host

 // and resturn result

 C := pC;

 result := C[m,k];

 // set the number of threads to

 // the available number

 // supported by device

 oclSetNumThreads(0);

end mainF ;

function initialize

 input Integer m;

 input Integer n;

 input Integer k;

 input parglobal Integer pn;

 input parglobal Integer pk;

 output parglobal Real pA[m,n];

 output parglobal Real pB[n,k];

algorithm

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 403
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 parfor i in 1:m loop

 for j in 1: pn loop

 pA[i,j] := j;

 end for;

 end parfor;

 parfor j in 1:n loop

 for h in 1: pk loop

 pB[j,h] := h;

 end for;

 end parfor ;

end initialize ;

parkernel function matrixmultiply

 input parglobal Integer pn;

 input parglobal Real pA [: ,:];

 input parglobal Real pB [: ,:];

 output parglobal Real pC[size(pA,1),

size(pB,2)];

protected

 Real plocaltmp ;

 Integer i,j;

algorithm

 // Returns unique global thread Id value

 // for first and second dimension

 i := oclGetGlobalId (1);

 j := oclGetGlobalId (2);

 plocaltmp := 0;

 for h in 1: pn loop

 plocaltmp := plocaltmp + (pA[i,h] *

 pB[h,j]);

 end for;

 pC[i,j] := plocaltmp;

end matrixmultiply;

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

404 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

	A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core Platforms
	Abstract
	1 Introduction
	2 Parallel Simulation of Modelica Models on Multi-Core Computers
	3 GPU Architectures, CUDA, and OpenCL
	3.1 NVIDIA GPU CUDA – Compute Unified Device Architecture
	3.1.1 NVIDIA GPU Memory Hierarchy

	3.2 OpenCL – the Open Computing Language
	3.2.1 OpenCL Execution Model

	4 ParModelica: Extending Modelica for Explicit Algorithmic Parallel Programming
	4.1 Parallel Variables
	4.2 Parallel Functions
	4.3 Kernel Functions
	4.4 Parallel For Loop: parfor
	4.5 Executing User-written OpenCL Code from ParModelica.
	4.6 Synchronization and Thread Management

	5 Benchmarking and Evaluation
	5.1 The MPAR Benchmark Suite
	5.2 Measurements
	5.3 Simulation Results

	6 Guidelines for Using the New Parallel Language Constructs
	7 Conclusions
	8 Acknowledgements
	References
	Appendix A. Serial Matrix Multiply
	Appendix B. Parallel Matrix-Matrix Multiplication with parfor and Kernel functions

