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Abstract

This paper presents a complete case study that takes
a real Fuel Display System element used in Scania
Trucks and applies an unified process for modelling
system requirements together with the system itself
and verifying these requirements in a structured man-
ner. In order to achieve this process the system is mod-
eled in Modelica, and requirement verification sce-
narios are specified in ModelicaML and verified with
the vVDR (Virtual Verification of Designs against Re-
quirements) approach.

Keywords: system modeling; requirement verifica-
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1 Introduction

As electronic systems become increasingly complex,
so do the requirements that they must fulfill, both in
terms of functionality and safety. Thus, maintaining
the conformity between the system requirements and
the system implementation manually becomes increas-
ingly difficult and unproductive. The goal of this pa-
per is to investigate on the basis of a real case study
the integration of modeling based techniques for re-
quirement expression with the actual implementation
and the formalization of the requirement verification
process.

The case study presented in this paper is a compo-
nent of a Scania System Model used in real trucks.
Scania is one of the leading manufacturers of heavy
trucks and buses, operating in over 100 counties with
over 35,000 employees and more than 110 years of
history.

The Modelica language was chosen to model the
system. Modelica is non-proprietary, object-oriented,

equation based language for modeling multi-domain
complex physical systems.

2 An Integrated Modeling Approach

2.1 Requirement Specification in the Indus-
trial Context

The presence of Electrical and Electronic(E/E) Sys-
tems in vehicles has been increasing rapidly since the
early 1970s, coming to cover a wide range of applica-
tions. Today’s vehicles use around 30 Electronic Con-
trol Units (ECUs) for small cars and 80 ECUs for high-
end luxury cars and this number keeps growing.

In order to simplify system representation, a con-
cept called SESAMM (Scania Electrical System Ar-
chitecture Made for Modularization and Maintenance)
for SCANIA Truck and Bus electrical systems was de-
veloped [6]. However, with this approach the require-
ments are still kept separate from the system design.

The traditional document-based approach means
that all the requirements and design information are
written in document form, using natural language
and graphics. Although it can be regularized, the
document-based approach has fundamental limita-
tions. Traceability and consistency are hard to ensure,
since the information is spread out over different doc-
uments. Maintenance and reuse are also an issue, and
since part of the documents is written in natural lan-
guage, so is accuracy.

The goal of this work therefore, is to integrate the
description of the system requirements into the system
modeling process, thus benefitting from all the advan-
tages of model-based ingeneering.
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2.2 ModelicaML

ModelicaML [1] is an UML [2] profile and a language
extension for Modelica. The main purpose of Mod-
elicaML is to enable graphical system modeling using
the standardized UML notation together with the mod-
eling and simulation power of Modelica. ModelicaML
defines different views (e.g., composition, inheritance,
behavior) on system models. It is based on a subset of
UML and reuses some concepts from SysML. Mod-
elicaML is designed to generate Modelica code from
graphical models. Since the ModelicaML profile is an
extension of the UML meta-model it can be used as an
extension of both UML and SysML. A tool suite for
modeling with ModelicaML and generating Modelica
code can be downloaded from [3].

2.3 Virtual Verification of Designs against
Requirements(vVDR)

vVDR (Virtual Verification of Designs against Re-
quirements) is a method that enables model-based de-
sign verification against requirements. The first ver-
sion of the vVDR method and an example of its appli-
cation are illustrated in [8] using ModelicaML. Mod-
elicaML supports all Modelica constructs and, in addi-
tion, supports an adapted version of the UML state ma-
chine and activity diagrams for behavior modeling as
well as UML class composition diagrams for structure
modeling. This enables engineers to use the simula-
tion power of Modelica combined with a standardized
graphical notation for the creation of system models.
The main vVDR method steps are:

1. Formalize Requirements: This step explains
how to formalize requirements for design verifi-
cation and how to determine which requirements
can be verified using this method.

2. Select or Create Design Model to be verified
against Requirements: This step clarifies what
properties a system design model needs to have
in order to be suitable for this method.

3. Select or Create Verification Scenarios: This
step describes what the required properties of a
verification scenario are.

4. Create Verification Models: This step explains
what a verification model consists of and how it
can be created.

In order to enable guidance and automation, vVDR
introduces the concept of a requirement model, a

design alternative model and a verification scenario.
Each of these models is needed in order to create a ver-
ification model. In a scenario-based approach, a verifi-
cation model will comprise one design alternative that
is to be verified against a set of requirements by run-
ning one verification scenario as illustrated in Figure
1. Moreover, some additional models may be required.
For example, a dedicated calculation model might be
needed when the required data cannot be provided by
the design model if such calculation is not part of the
design.

!

Figure 1: Different models form a Verification Model

Moreover, vVDR anticipates different roles for dif-
ferent tasks, that are most likely to involve differ-
ent people. Each role requires specific skills and de-
fines the responsibility for different modeling artifacts.
For example, the formalization of requirements is per-
formed by a requirements analyst. This person is in
charge of requirements elicitation and negotiation. In
vVDR this person is also in charge of formalizing the
requirements for verification purpose because they are
the most familiar with the requirements and, by for-
malizing them, they will reduce the probability of mis-
interpretation. The formalization of designs (i.e. the
modeling of different design alternatives or versions)
is done by the system designer, and the formalization
of scenarios as well as the verification itself is done by
a tester.

In vVDR a notion of clients, mediators and
providers is introduced (see Figure 2). The concept
is called Value Bindings [7] and allows capturing of
relations that allow determining how different models
should be bound when they are combined into veri-
fication models. The basic idea for the definition of
bindings is the following:

• Each model that requires data from other models
should express this need by creating a new medi-
ator or by subscribing to an already existing one.

• Each mediator must have defined providers so
that the correct binding code for the clients can
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be derived.

Figure 2: Clients, mediators and providers relations
example

The defined relations are used to compose verifica-
tion models automatically.

3 Methodology

The classification of requirements is important since it
affects the requirement selection and verification pro-
cess. However, there is no consensus in the field of
requirement classification. The common sense divides
the requirements into functional and non-functional,
based on whether they answer the question of “what
the system does” or that of “how the system behaves
with respect to some observable attributes like perfor-
mance, usability, maintainability, etc.”, respectively.
However, in the practice, it turns out that a more de-
tailed classification of non-functional requirements is
needed. Martin Glinz [5] proposed a taxonomy for
both functional and non-functional requirements.

Figure 3: Requirement classification

Figure 3 illustrates the taxonomy proposed by Mar-
tin Glinz. In this view, non-functional requirements
can be classified as performance requirements, specific
quality requirements and constraints. Following is a
definition for each category:
Function Requirement is a requirement that de-
scribes the system’s reaction to input stimuli.

Performance is a requirement to specify the timing,
velocity etc. inside a desired tolerance.
Specific Quality Requirement is a requirement that
specifies the quality the system should have like ef-
ficiency, security, reliability, usability, maintainability
etc.
Constraint is a requirement that constrains the solu-
tion space beyond what is necessary for meeting the
given function, performance and specific quality re-
quirements.

Not all the requirements are fit to be verified by the
simulation model. Some require additional judgment
from the stakeholder. For instance, the Specific Qual-
ity Requirement which specifies the quality of the sys-
tem like reliability, maintainability etc., needs to be
verified based on the experience of a stakeholder. In
contrast to that, the functional and performance re-
quirements which consist of mathematical expressions
or boundaries are more suitable to be selected for the
dynamic requirement verification process. This is the
type of requirement we will concentrate on in this
case-study.

3.1 Requirement Formalization

This is the first step of the vVDR method. The main
goal of this step is to translate textual requirement
statements into formal models that can be processed
by computers and determine whether a particular re-
quirement is suited to be verified with this method.

In vVDR, a requirement is formalized by first iden-
tifying the quantifiable properties mentioned in the re-
quirement statement and then establishing the relation-
ship between them in order to express when this re-
quirement is evaluated and violated.

3.2 Design Model

In this step, a design model that needs to be veri-
fied against requirements is created. Since the design
model will be bound with verification scenario and re-
quirement in next steps, it should be able to provide
corresponding input to requirement model. This is
effectively accomplished by inspecting the mediators
that indicate what data in required and of what type the
values should be. When building the design model, the
modeler associates the providers for each mediator.

In addition to the analysis of the mediators that need
providers from the design model at hand, the designer
should indicate what the potential stimuli (clients) of
this system design model are, that can be set by sce-
narios (i.e. providers from the scenario models). In
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order to do so, the designer subscribes the compo-
nents that are to be stimulated to existing mediators or
creates new mediators respectively. The correspond-
ing providers will be defined in verification scenarios
whose creation is explained in the next section. This
approach is detailed in [7].

3.3 Verification Scenario

Verification scenarios are models that capture a spe-
cific course of actions which stimulate the design
model in order to cause a particular reaction. Veri-
fication scenarios are created based on requirements
with the intention to verify design against require-
ments. One scenario can be used to verify multiple
requirements and one requirement is usually verified
using multiple scenarios to increase the confidence in
the verification results due to the independence of the
scenarios. After creating the verification scenario, it
is bound with the designed system and requirements
which need to be verified.

3.4 Verification Model Generation

After creating the design model, requirement model
and verification scenario, this step is for binding these
models in ModelicaML in order to generate executable
Modelica code. By using the defined clients, medi-
ators and providers, verification models can now be
created automatically by determining valid combina-
tions of scenarios and requirements for a selected sys-
tem design model.

3.5 Requirement Verification

To express requirement violation, the attribute “status”
of type Integer is used, which is created by default for
each requirement. The meaning of its value is the fol-
lowing:

• 0 means requirement is not evaluated

• 1 means requirement is evaluated and not violated

• 2 means requirement is evaluated and violated

Now, the verification model generated from Mod-
elicaML in the previous step can be simulated in the
Modelica simulation environment. And based on the
verification result, the tester will be able to analyse the
system design based on the verification result.

4 A Case Study: Fuel Level Display

The case study introduced in this chapter is a Fuel
Level Display System (Figure 4), used in Scania
Trucks for indicating the fuel level of the truck.

Figure 4: Dash board on Truck

The fuel level system, UF18, has two functionali-
ties:

• fuel level estimation, which is presented as a per-
centage of the tank that is full. The fuel level
should be displayed continuously and work for
different vehicle types (truck, bus) and engine
types (gas, diesel);

• fuel level warning, which is activated when the
fuel level drops below a predefined value, when
activated the low level fuel warning should alert
the driver by some visible symbol.

These functionalities are represented by two allocation
elements, AE201 and AE202 respectively.

4.1 System Architecture

The technical architecture of the Fuel Level Display
System is schematized in Figure 5. Three ECUs com-
municate with each other through CAN-Buses. EMS
(Engine Management System) sending the fuel con-
sumption by the engine to COO (Coordinator System)
which estimates the fuel level in the tank and evaluates
the low fuel level warning. After processing in COO,
a signal carries the estimated fuel level in the tank and
the low fuel level warning to ICL (Instrument Cluster
System). The gauge and bulb in ICL will indicate to
the driver how much fuel is left in the tank.

4.2 Requirement Selection and Classification

In Scania, the requirements for UF18, AE201 and
AE202 are described in different technical documents

Model-based Requirement Verification : A Case Study 

 

388 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076385 



Figure 5: The technical architecture of FLD is com-
posed of three ECUs : Coordinator ECU(COO), En-
gine Management System(EMS) and Instrument Clus-
ter System(ICL).

respectively. These documents are very extensive, so
a subset of elements has been selected for modeling in
this case study [4].

UFR18_1 The indicated fuel level shall not
deviate more than ± 5% from
the actual volume in the tank.

UFR18_4 The low fuel level warning shall
warn one time when the esti-
mated fuel level reaches below a
limit of the measurable volume
in the tank. The limit should
be 10% for tank sizes below and
equal to 900 Liters and 7% for
larger tanks.

Based on the requirement classification presented
in Section 1, UFR18_1 is a performance requirement
that specifies the tolerance of the indicated fuel level.
The other requirement UFR18_4 is a functional re-
quirement describes how the low fuel level warning
behaves with respect to the estimated fuel level.

4.3 Requirement formalization

The next step is to formalize the following requirement
statement “UFR18_1: The indicated fuel volume shall
not deviate more than ±5% from the actual volume in
the tank.” The quantifiable properties are the:

• Indicated fuel volume (of type Real)

• Actual volume in tank (of type Real)

• And the tolerance of ±% (constant of type Real
and the value 0.05)

Note, that there is no precondition that defines when
this requirement is valid, i.e., this requirement shall
not be violated at any time. A possible precondition
could be that this requirement is only valid as long as

the truck is on. In this case the additional quantifiable
property identified would be the fact that the truck is
on, i.e. “truck is on (of type Boolean)”.

Since this requirement should be checked at all
times we only need to express when it is violated or
not violated as follows:

status = if abs(indicatedFuelLevel
- actualVolumeInTank) >

actualVolumeInTank * tolerance
then 2 else 1

The code sets the attribute status to 2 (i.e. eval-
uated and violated) or 1 (evaluated and not violated)
depending on whether the absolute value of the differ-
ence between the indicated fuel level and actual fuel
level in tank is greater than the allowed tolerance or
not.

Consider another requirement statement:
“UFR18_4: The low fuel level warning shall
warn one time when the estimated fuel level reaches
below a limit of the measurable volume in the tank.
The limit should be 10% for tank sizes below and
equal to 900 liters and 7% for larger tanks.” The
quantifiable properties that are mentioned in this
statement are:

• Estimated fuel level (of type Real)

• Warning active (of type Boolean)

• Limit (constant of type Real)

• Size of the tank (constant of type Real)

Again, there is no precondition for this requirement
so it shall not be violated at any time. To express the
violation we could define the status to be:

status = if (estimatedFuelLevel
< sizeOfTank * limit)

and not warningActive
then 2 else 1

All identified properties are inputs that are to be set
to the corresponding data from other models, for ex-
ample the design model or models that capture the de-
sign parameters.

4.4 Design Model

In this section, a design model is written in Model-
ica. Figure 6 illustrates the breakdown of the fuel
level display system. It consists of four levels from

Session 3C: Language and Compilation Concepts I 

DOI Proceedings of the 9th International Modelica Conference    389 
10.3384/ecp12076385 September 3-5, 2012, Munich, Germany   



Figure 6: Breakdown of System Design

SESAMM to hardware and software. In the software
domain, the application software is implemented in
C code generated from the Simulink model through
Real-time Workshop(RTW).

Figure 7: Second level of the system

Figure 7 shows the class diagram of the second
level, different ECUs connecting with each other
through different CAN-Buses. SESAMM uses dif-
ferent colors of CAN-Buses in order to distinguish
between the most safety crucial ECUs and the less
safety crucial ECUs. Furthermore, the port lo-
cated on the top-right of the model carries the
indicatedFuelLevel and warningActive calcu-
lated by the Simulink model.

Figure 8: Joint Simulation in Dymola and Simulink

The Design model and the Simulink model are sim-

ulated through a built-in Dymola-Simulink interface
as shown in Figure 8. The interface provides the
Simulink model with two inputs, fuel rate from the En-
gine Management System and the fuel level which is
measured by a sensor.

4.4.1 Verification Scenario

Figure 9: Verification Scenario

After having designed the system, the next step is
to create a verification scenario (Figure 9) in order to
verify whether the designed system fulfills the require-
ments. For the fuel level display system, the verifica-
tion scenario describes how the fuel level in the tank
decreases with respect to time. In addition, by inspect-
ing the mediators that represent the need for simulation
of the design models, the tester will define correspond-
ing providers that are associated with the mediators.

Figure 10: Simulation Result of Scenario Model

In this case study, a verification scenario describes
the fuel level in the tank decreasing from 20% to 0%
of the capacity of the tank. The verification scenario
provides two inputs to the design model, Fuel level and
Fuel Volume. Fuel level represents the fuel level mea-
sured by the sensor which consists of a noise signal
caused by the shaking of tank during driving. The fuel
volume represents the ideal fuel volume in the tank. In
Figure 10, the blue line represents the fuel level and the
red line represents fuel volume. By using this verifica-
tion scenario, UFR18_1 and UFR18_4 can be verified
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at the same time.

4.5 Verification Model Generation

Figure 11: Verification Models Generation

In ModelicaML, the verification model can be gen-
erated by binding the design model, to the verifica-
tion scenario and the requirements. By using the de-
fined clients, mediators and provider verification mod-
els can now be created automatically by determining
valid combinations of scenarios and requirements for
a selected system design alternative model [7] as illus-
trated in Figure 11. The generated verification models
comprise the components that are bound correctly and
are ready to be simulated.

Figure 12: Verification Model in Modelica Simulation
Environment

Figure 12 shows the package when the importing
verification model to the Modelica simulation environ-
ment. The package ModelicaMLModel was created
in ModelicaML. It consists of a Verification Model, a
Scenario Model and a Requirement Model. The veri-
fication model binds other models together and simu-
lates the results.

4.6 Requirement Verification

The verification result of requirement UFR18_1 is
shown in Figure 13 and the verification result of re-
quirement UFR18_4 is illustrated in Figure 14. As
mentioned previously, there is no precondition for
these two requirements, so they should be evaluated
during the whole verification process.

Figure 13: Verification Result of UFR18_1

Figure 13 shows the verification result of the Total
Fuel Level element. The red line represents the ac-
tual volume in the tank and it decreases progressively
from 20% to 0%. The blue line shows the indicated
fuel level from the Instrument Cluster System. Finally,
the green line shows the requirement status. The sta-
tus starts at 1 which means the requirement is eval-
uated and not violated until around 20000 seconds.
From around 20000 seconds, the status changes to 2
which means that the requirement is evaluated and vi-
olated. So the corresponding requirement UFR18_1
is fulfilled in the first 20000 seconds, then it violated
until the end of the simulation.

Figure 14: Verification Result of UFR18_4

Figure 14 shows the verification results of the Low
Fuel Level Warning element. The blue line shows the
indicated fuel level from Instrument Cluster System
which decreases progressively from 20% to around
0%. The green line shows the threshold at which the
low fuel level warning must be enabled. The black
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status line illustrates that the requirementUFR18_2 is
violated during 10541 second to 10776 second.

Figure 15: Requirement Violation

Figure 15 is the monitor that shows whether the test
is passed or not. As we can see from picture, the is test
passed in the first 10541 seconds since both require-
ments are not violated. After 10541 seconds, require-
ment UFR18_4 is violated which means that the test
fails.

5 Conclusion and Future Work

This case study illustrates the approach to formalizing
requirements from document-based format through
the vVDR methodology, and generating verification
scenarios to test whether the system fulfills these re-
quirements.

The reasons for choosing vVDR approach are its re-
quirements formalization approach, its scalability and
the level of possible automation. The way require-
ments are formalized detects inconsistencies or in-
completeness of requirements, it allows expressing re-
quirements monitors using the same formalisms that
are used to formalize designs or scenarios, and it
allows determining which requirements can be ver-
ified using simulations. This is possible based on
the knowledge which design models are or will be
in place. The generation of verification models, pro-
vided by the vVDR approach and its implementation
in ModelicaML, automates the process of solving the
combinatorial task to select scenarios that are appro-
priate to stimulated a given design alternative model
and all requirements that can be verified by running
this scenario. For a small number of requirements,
scenarios and design alternatives this approach may be
overdone. However, assuming a large number of these
artifacts in a real-life project the provided automation
is expected to significantly improve the process effi-
ciency.

The goal is to further investigate and generalize the

modelling methodology in the industrial context, by
applying to to larger test cases and formalizing the
process. This work is part of a larger project on a in-
tegrated toolchain from documentation formalization
through to requirement verification and fault tolerance
analysis.
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