
State Machines in Modelica

Hilding Elmqvist
1
 Fabien Gaucher

2
 Sven Erik Mattsson

1
 Francois Dupont

3

1
Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden

2
Dassault Systèmes, 84, Allée Galilée, 38330-Montbonnot-St-Martin, France

3
Dassault Systèmes, 120, rue René Descartes, 29280 – Plouzané, France

Hilding.Elmqvist@3ds.com Fabien.Gaucher@3ds.com

SvenErik.Mattsson@3ds.com Francois.Dupont@3ds.com

Abstract

The scope of Modelica has been extended from a

language primarily intended for physical systems

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state

machines.

This paper describes the state machines intro-

duced in Modelica 3.3. Any block without conti-

nuous-time equations or algorithms can be a state of

a state machine. Transitions between such blocks are

modeled by a new kind of connections associated

with transition conditions.

The paper gives the details for building state ma-

chines and includes several examples. In addition,

the complete semantics is described using only 13

Modelica equations.

Keywords: Modelica; State Machines; Control;

1 Introduction

The scope of Modelica has been extended from a

language primarily intended for physical systems

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state

machines and enabling automatic code generation for

embedded systems.

This paper presents state machines in Modelica.

A companion paper (Elmqvist, et.al, 2012) describes

the fundamental synchronous language primitives

introduced for increased correctness of control sys-

tems implementation since many more checks can be

done at compile time.

The paper describes language elements to define

state machines. Any block without continuous-time

equations or algorithms can be a state of a state ma-

chine. Transitions between such blocks are

represented by a new kind of connections associated

with transition conditions.

The paper gives the details for building state ma-

chines and includes several examples. In addition,

the complete semantics is described using only 13

Modelica equations.

2 States and Transitions

Modelica State Machines will be introduced gradual-

ly by means of examples.

Modelica block instances without continuous-

time equations or algorithms can potentially be states

of a state machine. A cluster of block instances at the

same hierarchical level which are coupled by transi-

tion equations constitutes a state machine. All parts

of a state machine must have the same clock. One

and only one instance in each state machine must be

marked as initial by appearing in an initialState equ-

ation.

2.1 A Simple State Machine

As a first example, consider the trivial state machine

of Figure 1.

Figure 1. A simple state machine

DOI Proceedings of the 9th International Modelica Conference 37
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

An inner variable i is defined in the model which has

two block instances state1 and state2. In the corres-

ponding block definitions, i is declared as „outer out-

put‟ which means that i is an output from both of the

blocks. In state1, i is incremented by 2 and in state2,

i is decremented by 1. How such multiple definitions

are handled is described below.

If state1 is active, a transition to state2 is made

when i>10. If state2 is active, a transition to state1 is

made when i<1.

The simulation result is shown in Figure 2.

Figure 2. Plot of v of simple state machine

The Modelica code (without annotations) is:

model StateMachine1
 inner Integer i(start=0);

 block State1
 outer output Integer i;
 equation
 i = previous(i) + 2;
 end State1;
 State1 state1;

 block State2
 outer output Integer i;
 equation
 i = previous(i) - 1;
 end State2;
 State2 state2;

equation
 initialState(state1);
 transition(state1, state2, i > 10, immediate=false);
 transition(state2, state1, i < 1, immediate=false);
end StateMachine1;

2.2 Merging Variable Definitions

When a state class uses a variable in an outer output

declaration, the equations have access to the corres-

ponding variable declared inner. Special rules are

then needed to maintain the single assignment rule

since multiple definitions of such outer variables in

different mutually exclusive states of one state ma-

chine need to be merged.

In each state, the outer output variables (vj) are

solved for (exprj) and, for each such variable, a sin-

gle definition is automatically formed:

v := if activeState(state1) then expr1

 elseif activeState(state2) then expr2

 elseif … else last(v)

last() is a special internal semantic operator return-

ing its input. It is just used to mark for the sorting

that the incidence of its argument should be ignored.

A start value must be given to the variable if not as-

signed in the initial state.

Such a newly created assignment equation might

be merged on higher levels in nested state machines.

2.3 Defining a state machine

The following special kinds of connect-equations are

used to define transitions between states and to de-

fine the initial state:

transition(from, to, condition, immediate, reset,

 synchronize, priority)

Arguments “from” and “to” are block instances and

“condition” is a Boolean expression. The optional

arguments “immediate”, “reset”, and “synchronize”

are of type Boolean, have parametric variability

and a default of true, true, false respectively. The

optional argument “priority” is of type Integer, has

parametric variability and a default of 1.

This operator defines a transition from instance

“from” to instance “to”. The “from” and “to” in-

stances become states of a state machine. The tran-

sition fires when condition = true if immediate =

true (this is called an “immediate transition”) or

previous(condition) when immediate = false (this

is called a “delayed transition”).

The argument “priority” defines the priority of fir-

ing when several transitions could fire. priority=1

is the highest priority.

If reset = true, the states of the target state are reini-

tialized, i.e. state machines are restarted in initial

state and state variables are reset to their start val-

ues.

If synchronize=true, the transition is disabled until

all state machines within the from-state have

reached the final states, i.e. states without outgoing

transitions.

initialState(state)

The argument “state” is the block instance that is

defined to be the initial state of a state machine. At

the first clock tick of the state machine, this state

becomes active.

State Machines in Modelica

38 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

The attributes of transitions are shown graphically as

illustrated in Figure 3.

Figure 3. Graphical conventions for transitions

A transition has a perpendicular bar representing the

condition which is close to the destination state for

an immediate transition, else close to the source

state. The arrow is filled for a reset transition other-

wise non-filled. A synchronize transition has an “in-

verted fork” at the source state. Priority is shown

preceding the condition if not equal to one. For the 5

transitions in Figure 3, the settings are as follows,

from left to right:

 immediate = true, false, true, false, true;

 reset = true, true, false, false, true;

 synchronize = false, false, false, false, true;

 priority = 1, 2, 3, 4, 5.

All transitions leaving the same state must have dif-

ferent priorities.

It is possible to query the status of the state ma-

chine by using the following operators:

activeState(state)

Argument “state” is a block in-

stance. The operator returns true,

if this instance is a state of a

state machine and this state is

active at the actual clock tick. If

it is not active, the operator re-

turns false.

It is an error if the instance is not

a state of a state machine.

ticksInState()

Returns the number of clock

ticks since a transition was made

to the currently active state. This

function can only be used in

transition conditions of state ma-

chines not present in states of

higher level state machines.

timeInState()

Returns the time duration as Real

in [s] since a transition was made

to the currently active state. This

function can only be used in

transition conditions of state ma-

chines not present in states of

higher level state machines.

2.4 Immediate and Delayed Transitions

If we attempt to simulate the state machine in Figure

1 with transitions having immediate=true, we get the

error message in Dymola:
An algebraic loop involving Integers or

Booleans has been detected.

The reason is that since the transition conditions

involve i, the variable defined in the equations, there

is a cyclic dependency or algebraic loop between the

update equations for i and the update equations for

state machine evolution.

2.5 Conditional Data Flows

An alternative to using outer output variables is to

use conditional data flows. Since instances of blocks

can be used as states of a state machine, the connec-

tion semantics of Modelica has been extended to al-

low several outputs to be connected to one input.

Consider the combined state machine and data

flow diagram in Figure 4:

Figure 4. Combined state machine and data flow

diagram

The states are instances of the block:

block Increment
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
 parameter Integer increment;
equation
 y = u + increment;
end Increment;

with increment values 2 and -1 respectively. The

outputs are connected to a protected connector called

i in order to be able to use i in the transition condi-

tions. The connector i is connected to an instance of

the block:

block Prev
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
equation
 y = previous(u);

state1

state2

a

2: b

3: c

4: d
5: e

add2

sub1

prev
i > 10

i < 1

i

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 39
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

end Prev;

The connections from the state instances to i in Fig-

ure 4 are handled in a special way. It is possible to

connect several outputs to inputs if all the outputs

come from states of the same state machine. In such

cases, we get the following constraint equations:

u1 = u2 = … = y1 = y2 = …

with ui inputs and yi outputs. The semantics is de-

fined as follows. Introduce a variable v representing

the signal flow and rewrite the equation above as a

set of equations for ui and a set of assignment equa-

tions for v:

v := if activeState(state1) then y1 else last(v);

v := if activeState(state2) then y2 else last(v);

…

u1 = v

u2 = v

…

The merge of the definitions of v is then made ac-

cording to section „Merging Variable Definitions‟.

The result of the merge is:

v = if activeState(state1) then y1

 elseif activeState(state2) then y2

 elseif … else last(v)

…

Plotting i shows the same behavior as the plot of i of

the example using inner outer declarations.

3 Hierarchical State Machine

Example

Consider the hierarchical state machine in Figure 5:

Figure 5. Hierarchical state machine

The model demonstrates the following properties:

 state1 is a meta state with two parallel state ma-

chines in it.

 stateA declares v as „outer output‟. state1 is on

an intermediate level and declares v as „inner

outer output‟, i.e. matches lower level outer v by

being inner and also matches higher level inner v

by being outer. The top level declares v as inner

and gives the start value.

 count is defined with a start value in state1. It is

reset when a reset transition (v>=20) is made to

state1.

 stateX declares the local variable w to be equal

to v declared as „inner input‟.

 stateY declares a local counter j. It is reset at

start and as a consequence of the reset transition

(v>=20) from state2 to state1. However, the reset

of j is deferred until stateY is entered by transi-

tion (stateX.i>20) although this transition is not a

reset transition. This is done by marking that sta-

teY should be reset when making the reset tran-

sition v>=20 and deferring the reset until stateY

is actually entered. Synchronizing the exit from

the two parallel state machines of state1 is done

by using a synchronized transition.

State Machines in Modelica

40 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

The behavior of the state machine can be seen in the

plots of v and w and i of Figure 6:

Figure 6. Behavior of hierarchical state machine

4 Adaptive Cruise Control Example

As a more useful example, we will consider a vehicle

with adaptive cruise control, i.e. controller that can

drive the car at a certain speed or follow the car in

front at a safe distance.

The example is simplified considerably to be able

to explain all the details in limited space. And the

data is just designed for illustrative purposes.

The vehicle dynamics is described by the follow-

ing model (without annotations):

model Vehicle
 parameter Real k=5000;
 parameter Real m=1000;
 parameter Real loss=5;
 Modelica.Blocks.Interfaces.RealInput ud;
 Modelica.Blocks.Interfaces.RealOutput xd;
 Modelica.Blocks.Interfaces.RealOutput vd;

 Modelica.SIunits.Distance x(start=0, fixed=true);
 Modelica.SIunits.Velocity v(start=0, fixed=true);
 Real tau;
equation
 der(x) = v;
 m*der(v) = k*tau - loss*v*abs(v);

 tau = hold(ud);
 xd = sample(x, Clock(1, 10));
 vd = sample(v, Clock(1, 10));
end Vehicle;

The power train is considered ideal.

A vehicle with the cruise control system is shown

in Figure 7. It has an instance of the vehicle dynam-

ics (with a car icon) with a sampled input ud on the

left and two sampled outputs (period=1/10 second),

xd and vd (counting from the top) to the right.

Figure 7. Vehicle with adaptive cruise controller

The top level state machine has two modes: normal

and emergency. Both produces the control signal u

connected to ud of the vehicle. The normal mode has

vd and xrel as inputs. xrel is formed as the difference

between the vehicle position and the position of the

vehicle in front, available as an input.

The normal state has three states: manual, cruise

and follow. The manual state is a simple start up state

“stepping on the gas” until the desired speed has

been achieved. The cruise state contains a speed con-

troller implemented as a simple P-controller with

limitation.

When the vehicle comes within 100 meters of the

vehicle in front, follow state is entered. It contains a

position controller with xref=-100. Since the vehicle

is essentially a double integrator from throttle to po-

sition, a PD controller is needed. In this case a naïve

implementation without filtering is shown. When the

distance is larger than 150 meters, cruise mode is

reentered.

The emergency state is entered when the distance

to the car in front is less than 25 meters independent-

ly in which substate normal is in. Maximum braking

power (-3) is then applied until the car has stopped.

When the distance is again 200 meters, the normal

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 41
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

state is entered with a reset transition, i.e. the sub-

state of manual of state normal is activated.

The architecture with two entirely different con-

trollers for speed and position was chosen to illu-

strate the possibility in particular regarding how the

data flow connections can be used. (Adaptive cruise

control can also be achieved using a cascade control-

ler with an inner speed loop.)

A model of a platoon of 5 CruisingVehicles was

built. The desired speed vref is set as {100, 60, 65,

50, 25} km/h. The initial speeds are the same except

for the last car (cruisingVehicle) which is standing

still. The distances between the cars are 200 meters.

The results of simulation are shown in Figure 8:

position on top and velocity below. All cars slow

down to follow the first car (cruisingVehicle4) at 25

km/h at a distance of 100 meter.

Figure 8. Positions and velocities of vehicles

in a platoon

The control signals are shown in Figure 9.

Figure 9: Control signals

The implementation of the cruise state shown in Fig-

ure 7 is a bit simplified using a parameter vref for the

velocity set point. Usually, the triggering of going

from manual to cruise mode is done by a button. The

cruise mode is then picking up the current speed and

uses that as a set point. Such an implementation can

be made as follows:

model Cruise
 parameter Real K = 1;
 Real c, vref;
 Boolean reinit(start=true) = false;
 Modelica.Blocks.Interfaces.RealOutput u;
 Modelica.Blocks.Interfaces.RealInput v;
equation
 vref = if previous(reinit) then v else previous(vref);
 c = K*(vref-v);
 u = max(min(c, 1),-0.5);
end Cruise;

This is a general modeling idiom for special treat-

ment when a state is entered. The equation for reinit

is reinit = false. However, the start value is true, so

previous(reinit) gives a pulse at the first cycle if a

reset transition is made to the state.

So the desired behavior is achieved by a reset

transition from manual to cruise, but a non-reset

transition from follow to cruise, since in the last

case, the stored vref should be used.

A platoon of 100 vehicles can easily be con-

structed using an array of CruisingVehicles:

model Platoon
 parameter Integer n=100;
 CruisingVehicle cruisingVehicle[n](vref=linspace(100, 50.5, n));
 Modelica.Blocks.Sources.Constant const(k=10000);
equation
 connect(const.y, cruisingVehicle[n].xFront);
 for i in 1:n-1 loop
 connect(cruisingVehicle[i+1].xd,

 cruisingVehicle[i].xFront);
 end for;
end Platoon;

State Machines in Modelica

42 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

This is a good example of how well the state ma-

chine concept is integrated in Modelica allowing to

use data flows between states, using modifiers for

parameterization, using redeclare of classes and

components and using arrays of a mixture of state

machines and continuous dynamical models.

5 State Machine Semantics

This section is not intended for normal users of

Modelica state machines. It is included since the pre-

cise semantics can be described using only 13 Mod-

elica equations and is thus a convenient reference for

advanced users and tool developers.

For the purpose of defining the semantics of state

machines, assume that the data of all transitions are

stored in an array of records, t:

record Transition
 Integer from;
 Integer to;
 Boolean immediate = true;

 Boolean reset = true;

 Boolean synchronize = false;
 Integer priority = 1;
end Transition;

The transitions are sorted with lowest priority num-

ber last in the array. The states are enumerated from

1 and up. The transition conditions are stored in a

separate array c[:] since they are time varying.

The semantics model is a discrete-time system

with inputs {c[:], active, reset}, outputs {activeState,

activeReset, activeResetStates[:]} and states

{nextState, nextReset, nextResetStates[:]}. For a top

level state machine, active is always true. For sub-

state machines, active is true only when the parent

state is active. For a top level state machine, reset is

true at the first activation only. For sub-state ma-

chine, reset is propagated from the state machines

higher up.

5.1 State Activation

The state update starts from nextState, i.e.,what has

been determined to be the next state at the previous

time. selectedState takes into account if a reset of the

state machine is to be done.

 output Integer selectedState =

 if reset then 1 else previous(nextState);

The integer fired is calculated as the index of the tran-

sition to be fired by checking that selectedState is the

from-state and the condition is true for an immediate

transition or previous(condition) is true for a delayed

transition. The max function returns the index of the

transition with highest priority or 0.

 Integer fired =

 max(if (if t[i].from == selectedState then (if t[i].immediate

 then c[i] else previous(c[i])) else false) then i else 0

 for i in 1:size(t,1));

The start value of c is false. This definition would

require that the previous value is recorded for all

transitions conditions. Below is described an equiva-

lent semantics which just requires to record the value

of one integer variable delayed. The integer imme-

diate is calculated as the index of the immediate

transition to potentially be fired by checking that

selectedState is the from-state and the condition is

true. The max function returns the index of the tran-

sition with true condition and highest priority or 0.

 Integer immediate =

 max(if (if t[i].immediate and t[i].from == selectedState then

 c[i] else false) then i else 0 for i in 1:size(t,1));

In a similar way, the Integer delayed is calculated as

the index for a potentially delayed transition, i.e. a

transition taking place at the next clock tick. In this

case the from-state needs to be equal to nextState:

 Integer delayed =

 max(if (if not t[i].immediate and t[i].from == nextState then

 c[i] else false) then I else 0 for i in 1:size(t,1));

The transition to be fired is determined as follows,

taking into account that a delayed transition might

have higher priority than an immediate:

 Integer fired = max(previous(delayed), immediate);

nextState is set to the found transitions to-state:

 Integer nextState = if active then (if fired > 0 then t[fired].to

 else selectedState) else previous(nextState);

In order to define synchronize transitions, each state

machine must determine which are the final states,

i.e. states without from-transitions and to determine

if the state machine is in a final state currently:

 Boolean finalStates[nStates] =

 {max(if t[j].from == i then 1 else 0 for j in 1:size(t,1)) == 0

 for i in 1:nStates};

 Boolean stateMachineInFinalState = finalStates[activeState];

To enable a synchronize transition, all the stateMachi-

neInFinalState conditions of all state machines within

the meta state must be true.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 43
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

5.2 Reset Handling

A state can be reset for two reasons:

 The whole state machine has been reset from its

context. In this case, all states must be reset, and

the initial state becomes active.

 A reset transition has been fired.

Then, its target state (and its sub-state machines)

are reset, but not other states.

The first reset mechanism is handled by the activeRe-

setStates and nextResetStates vectors. The state machine

reset flag is propagated and maintained to each state

individually:

 output Boolean activeResetStates[nStates] =

 {if reset then true else previous(nextResetStates[i])

 for i in 1:nStates};

until a state is eventually executed, then its corres-

ponding reset condition is set to false:

 Boolean nextResetStates[nStates] = if active then

 {if activeState == i then false else activeResetStates[i]

 for i in 1:nStates}

The second reset mechanism is implemented with

the selectedReset and nextReset variables. If no reset

transition is fired, the nextReset is set to false for the

next cycle.

5.3 Activation handling

The execution of a sub-state machine has to be sus-

pended when its enclosing state is not active. This

activation flag is given as a Boolean input active.

When this flag is true, the sub-state machine main-

tains its previous state, by guarding the equations of

the state variables nextState, nextReset and
nextResetStates.

5.4 Semantics Summary

The entire semantics model is given below:

model StateMachineSemantics "Semantics of state machines"
 parameter Integer nStates;
 parameter Transition t[:]

 "Array of transition data sorted in priority";
 input Boolean c[size(t,1)]

 "Transition conditions sorted in priority";

 Boolean active "true if the state machine is active";
 Boolean reset "true when the state machine should be reset";

 Integer selectedState = if reset then 1 else previous(nextState);
 Boolean selectedReset = if reset then true

 else previous(nextReset);

// For strong (immediate) and weak (delayed) transitions
 Integer immediate = max(if (if t[i].immediate and t[i].from ==

 selectedState then c[i] else false) then i else 0

 for i in 1:size(t,1));

 Integer delayed = max(if (if not t[i].immediate and t[i].from ==

 nextState then c[i] else false) then i else 0 for i in 1:size(t,1));

 Integer fired = max(previous(delayed), immediate);
 output Integer activeState = if reset then 1

 elseif fired > 0 then t[fired].to else selectedState;
 output Boolean activeReset = if reset then true

 elseif fired > 0 then t[fired].reset else selectedReset;

// Update states
 Integer nextState = if active then activeState

 else previous(nextState);
 Boolean nextReset = if active then false

 else previous(nextReset);

// Delayed resetting of individual states
 output Boolean activeResetStates[nStates] = {if reset then true

 else previous(nextResetStates[i]) for i in 1:nStates};
 Boolean nextResetStates[nStates] = if active then

 {if selectedState == i then false else activeResetStates[i]

 for i in 1:nStates}

 else previous(nextResetStates);

 Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0

 for j in 1:size(t,1)) == 0 for i in 1:nStates};

 Boolean stateMachineInFinalState = finalStates[activeState];

end StateMachineSemantics;

6 Comparison to Other State Ma-

chine Formalisms

State machines needed to be introduced in Modelica

to enable modeling of complete systems. Several

attempts have been made: (Mosterman et. al. 1998),

defines state machines in an object-oriented way

with Boolean equations. A more powerful state ma-

chine formalism was introduced in StateGraph (Otter

et. al. 2005). A prototype mode automata formalism

was implemented (Malmheden et. al. 2008) using a

built-in concept of modes. Certain problems of po-

tentially unsafe models in StateGraph were removed

in the StateGraph2 library (Otter et. al. 2009). These

efforts showed that state machine support must be

natively supported in the language.

The presented state machines of Modelica 3.3

have a similar modeling power as Statecharts (Harel,

1987) and State Machine Diagrams of SysML (Frie-

denthal 2008).

The semantics of the state machines defined in

this paper is inspired by mode automata (Maraninchi

2002) and basically the same as Lucid Synchrone 3.0

(Pouzet 2006), or its clone LCM (Logical Control

Module) (Gaucher et.al. 2009). Some minor proper-

ties are different compared to Lucid Synchrone 3.0,

State Machines in Modelica

44 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

in particular regarding transition conditions. Lucid

Synchrone has two kinds of transitions: namely

“strong” and “weak”. Strong transitions are executed

before the actions of a state are evaluated while weak

transitions are executed after. This can lead to sur-

prising behavior, because the actions of a state are

skipped if it is activated by a weak transition and

exited by a true strong transition. For this reason, the

state machines in Modelica use “immediate” (= the

same as “strong”) and “delayed” transitions. Delayed

transitions are “immediate” transitions where the

condition is automatically delayed with an implicit

previous(...).

Note that safety critical control software in air-

crafts is often defined with such kind of state ma-

chines, such as using the Scade 6 Tool Suite from

Esterel Technologies (Dormoy 2008) that provides a

similar formalism as Lucid Synchrone, with minor

differences such as the ability to associate actions to

transitions in addition to states. Scade also provides

synchronize semantics by means of synchronization

transitions between several parallel sub-state ma-

chines being in states which have been declared fi-

nal.

Stateflow (Mathworks 2012), while being very

expressive, suffers from “numerous, complex and

often overlapping features lacking any formal defini-

tion”, as reported by (Hamon, et.al, 2004).

The presented Modelica approach has the impor-

tant feature that at one clock tick, there is only one

assignment to every variable (for example, it is an

error if state machines are executed in parallel and

they assign to the same variable at the same clock

tick; such errors are detected at compile-time).

Modelica, Lucid Synchrone, LCM and Scade 6

all have the property that data flow and state ma-

chines can be mutually hierarchically structured, i.e.

that, for example a state of a state machine can con-

tain a block diagram in which the blocks might con-

tain state machines.

7 Conclusions

We have described how state machines can be mod-

eled in Modelica 3.3. Instances of blocks connected

by transitions with one such block marked as an ini-

tial state constitute a state machine. Hierarchical

state machines can be defined with reset or resume

semantics, when re-entering a previously executed

state. Parallel sub-state machines can be synchro-

nized when they reached their final states. Special

merge semantics have been defined for multiple out-

er output definitions in mutually exclusive states as

well as conditional data flows.

8 Acknowledgements

The authors are very thankful to Albert Benveniste,

Marc Pouzet, Martin Otter, Martin Malmheden, Da-

niel Weil, Torsten Blochwitz, Peter Fritzson, Carl-

Fredrik Abelson, Hans Olsson and other Modelica

Association members for stimulating discussions and

feedback during evolutions of the Modelica 3.3 spe-

cification.

The authors appreciate the partial funding of this

work by the Swedish funding organization VINNO-

VA (funding number: 2008-02291) within the

ITEA2 MODELISAR project (http://www.itea2.org/

project/result/download/result/5533).

References

Dormoy F.X. (2008): SCADE 6 A Model Based

Solution For Safety Critical Software

Development, ERTS EMBEDDED REAL

TIME SOFTWARE 2008, TOULOUSE,

FRANCE, http://www.esterel-

technologies.com/EN-50128/files/ERTS2008-

SCADE-6-A-Model-Based-Solution-For-

Safety-Critical-Software.pdf

Elmqvist H., Otter M., and Mattsson S.E. (2012):

Fundamentals of Synchronous Control in

Modelica. Proceedings of 9th International

Modelica Conference, Munich, Germany,

September 3-5.

Friedenthal S., Moore A., and Steiner R. (2008): A

Practical Guide to SysML –The Systems

Modeling Language, Elsevier Inc.

Gaucher F., Closse E., Weil D. (2009): The LCM

Language Primer, Dassault Systèmes Internal

Report, Grenoble, France, 2009

Hamon G., and Rushby J. (2004). An operational

semantics for Stateflow. In Fundamental

Approaches to Software Engineering

(FASE)’04, volume 2984 of LNCS, pages 229–

243, Barcelona, Spain, 2004. Springer.

http://fm.csl.sri.com/~rushby/papers/sttt07.pdf

Harel, D. (1987): Statecharts: A Visual Formalism

for Complex Systems. Science of Computer

Programming 8, 231-274. Department of Ap-

plied Mathematics, The Weizmann Institute of

Science, Rehovot, Israel.

www.inf.ed.ac.uk/teaching/courses/seoc1/-

2005_2006/resources/statecharts.pdf

Malmheden M., Elmqvist H., Mattsson S.E., He-

nriksson D., and Otter M. (2008): ModeGraph

- A Modelica Library for Embedded Control

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 45
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

http://www.esterel-technologies.com/EN-50128/files/ERTS2008-SCADE-6-A-Model-Based-Solution-For-Safety-Critical-Software.pdf
http://www.esterel-technologies.com/EN-50128/files/ERTS2008-SCADE-6-A-Model-Based-Solution-For-Safety-Critical-Software.pdf
http://www.esterel-technologies.com/EN-50128/files/ERTS2008-SCADE-6-A-Model-Based-Solution-For-Safety-Critical-Software.pdf
http://www.esterel-technologies.com/EN-50128/files/ERTS2008-SCADE-6-A-Model-Based-Solution-For-Safety-Critical-Software.pdf
http://fm.csl.sri.com/~rushby/papers/sttt07.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc1/2005_2006/resources/statecharts.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc1/2005_2006/resources/statecharts.pdf

Based on Mode-Automata. B. Bachmann

(editor), in Proc. of Modelica‟2008 conference,

Bielefeld, Germany.

www.modelica.org/events/modelica2008/Proce

edings/sessions/session3a3.pdf

Maraninchi, F. and Rémond, Y. (2002): Mode-

Automata: a New Domain-Specific

Construct for the Development of Safe

Critical Systems.
http://wwwverimag.imag.fr/~maraninx/SCP200

2.html

MathWorks (2012): R2012a Documentation -

Stateflow

http://www.mathworks.com/help/toolbox/statef

low/

Modelica Association (2012): Modelica Language

Specification Version 3.3.

https://www.modelica.org/documents/Modelica

Spec33.pdf.

Mosterman P., M. Otter, and H. Elmqvist. (1998):

Modeling Petri Nets as Local Constraint

Equations for Hybrid Systems using Modeli-

ca. Proceedings of SCSC‟98, Reno, Nevada,

USA, Society for Computer Simulation Inter-

national, pp. 314–319.

Otter M., K.-E. Årzén, and I. Dressler (2005): Sta-

teGraph – A Modelica Library for Hierar-

chical State Machines. Proceedings of the 4th

International Modelica Conference, Hamburg,

Germany, ed. G. Schmitz, pp. 569-578.

http://www.modelica.org/events/Conference20

05/online_proceedings/Session7/Session7b2.pd

f

Otter M., Malmheden M., Elmqvist H., S.E.

Mattsson, and C. Johnsson (2009): A New

Formalism for Modeling of Reactive and

Hybrid Systems. Proceedings of the 7th Inter-

national Modelica Conference, Como, Italy,

20-22 September 2009.

http://www.ep.liu.se/ecp/043/041/ecp09430108

.pdf

Pouzet M. (2006): Lucid Synchrone, Version 3.0,

Tutorial and Reference Manual.

http://www.di.ens.fr/~pouzet/lucid-synchrone/

State Machines in Modelica

46 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

http://wwwverimag.imag.fr/~maraninx/SCP2002.html
http://wwwverimag.imag.fr/~maraninx/SCP2002.html
https://www.modelica.org/documents/ModelicaSpec33.pdf
https://www.modelica.org/documents/ModelicaSpec33.pdf
http://www.di.ens.fr/~pouzet/lucid-synchrone/

