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Abstract 

The scope of Modelica has been extended from a 

language primarily intended for physical systems 

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state 

machines.  

This paper describes the state machines intro-

duced in Modelica 3.3. Any block without conti-

nuous-time equations or algorithms can be a state of 

a state machine. Transitions between such blocks are 

modeled by a new kind of connections associated 

with transition conditions. 

The paper gives the details for building state ma-

chines and includes several examples. In addition, 

the complete semantics is described using only 13 

Modelica equations.  
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1 Introduction 

The scope of Modelica has been extended from a 

language primarily intended for physical systems 

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state 

machines and enabling automatic code generation for 

embedded systems.  

This paper presents state machines in Modelica.  

A companion paper (Elmqvist, et.al, 2012) describes 

the fundamental synchronous language primitives 

introduced for increased correctness of control sys-

tems implementation since many more checks can be 

done at compile time.  

The paper describes language elements to define 

state machines. Any block without continuous-time 

equations or algorithms can be a state of a state ma-

chine. Transitions between such blocks are 

represented by a new kind of connections associated 

with transition conditions. 

The paper gives the details for building state ma-

chines and includes several examples. In addition, 

the complete semantics is described using only 13 

Modelica equations.  

2 States and Transitions 

Modelica State Machines will be introduced gradual-

ly by means of examples. 

Modelica block instances without continuous-

time equations or algorithms can potentially be states 

of a state machine. A cluster of block instances at the 

same hierarchical level which are coupled by transi-

tion equations constitutes a state machine. All parts 

of a state machine must have the same clock. One 

and only one instance in each state machine must be 

marked as initial by appearing in an initialState equ-

ation.  

2.1 A Simple State Machine 

As a first example, consider the trivial state machine 

of Figure 1. 

 

 

Figure 1. A simple state machine 
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An inner variable i is defined in the model which has 

two block instances state1 and state2. In the corres-

ponding block definitions, i is declared as „outer out-

put‟ which means that i is an output from both of the 

blocks. In state1, i is incremented by 2 and in state2, 

i is decremented by 1. How such multiple definitions 

are handled is described below. 

If state1 is active, a transition to state2 is made 

when i>10. If state2 is active, a transition to state1 is 

made when i<1.  

The simulation result is shown in Figure 2. 

 

Figure 2. Plot of v of simple state machine 

 

The Modelica code (without annotations) is: 
 

model StateMachine1 
  inner Integer i(start=0); 
 

  block State1 
    outer output Integer i; 
  equation  
    i = previous(i) + 2; 
  end State1; 
  State1 state1; 
 

  block State2 
    outer output Integer i; 
  equation  
    i = previous(i) - 1; 
  end State2; 
  State2 state2; 
 

equation  
  initialState(state1); 
  transition(state1, state2, i > 10, immediate=false); 
  transition(state2, state1, i < 1, immediate=false); 
end StateMachine1; 

2.2 Merging Variable Definitions 

When a state class uses a variable in an outer output 

declaration, the equations have access to the corres-

ponding variable declared inner. Special rules are 

then needed to maintain the single assignment rule 

since multiple definitions of such outer variables in 

different mutually exclusive states of one state ma-

chine need to be merged.  

In each state, the outer output variables (vj) are 

solved for (exprj) and, for each such variable, a sin-

gle definition is automatically formed: 

v := if activeState(state1) then expr1  

       elseif activeState(state2) then expr2  

       elseif … else last(v) 

 

last() is a special internal semantic operator return-

ing its input. It is just used to mark for the sorting 

that the incidence of its argument should be ignored. 

A start value must be given to the variable if not as-

signed in the initial state. 

Such a newly created assignment equation might 

be merged on higher levels in nested state machines. 

2.3 Defining a state machine 

The following special kinds of connect-equations are 

used to define transitions between states and to de-

fine the initial state: 

transition(from, to, condition, immediate, reset, 

                    synchronize, priority) 

Arguments “from” and “to” are block instances and 

“condition” is a Boolean expression. The optional 

arguments “immediate”, “reset”, and “synchronize” 

are of type Boolean, have parametric variability 

and a default of true, true, false respectively. The 

optional argument “priority” is of type Integer, has 

parametric variability and a default of 1. 

 

This operator defines a transition from instance 

“from” to instance “to”. The “from” and “to” in-

stances become states of a state machine. The tran-

sition fires when condition = true if immediate = 

true (this is called an “immediate transition”) or 

previous(condition) when immediate = false (this 

is called a “delayed transition”).  

 

The argument “priority” defines the priority of fir-

ing when several transitions could fire. priority=1 

is the highest priority.   

 

If reset = true, the states of the target state are reini-

tialized, i.e. state machines are restarted in initial 

state and state variables are reset to their start val-

ues.  

 

If synchronize=true, the transition is disabled until 

all state machines within the from-state have 

reached the final states, i.e. states without outgoing 

transitions.  

initialState(state) 

The argument “state” is the block instance that is 

defined to be the initial state of a state machine. At 

the first clock tick of the state machine, this state 

becomes active. 
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The attributes of transitions are shown graphically as 

illustrated in Figure 3. 

  

Figure 3. Graphical conventions for transitions 

 

A transition has a perpendicular bar representing the 

condition which is close to the destination state for 

an immediate transition, else close to the source 

state. The arrow is filled for a reset transition other-

wise non-filled. A synchronize transition has an “in-

verted fork” at the source state. Priority is shown 

preceding the condition if not equal to one. For the 5 

transitions in Figure 3, the settings are as follows, 

from left to right: 

  immediate  = true, false, true, false, true;  

  reset              = true, true, false, false, true;  

  synchronize  = false, false, false, false, true;  

  priority  = 1, 2, 3, 4, 5.  

 

All transitions leaving the same state must have dif-

ferent priorities.  

It is possible to query the status of the state ma-

chine by using the following operators: 

activeState(state) 

Argument “state” is a block in-

stance. The operator returns true, 

if this instance is a state of a 

state machine and this state is 

active at the actual clock tick. If 

it is not active, the operator re-

turns false.  

It is an error if the instance is not 

a state of a state machine. 

ticksInState() 

Returns the number of clock 

ticks since a transition was made 

to the currently active state. This 

function can only be used in 

transition conditions of state ma-

chines not present in states of 

higher level state machines. 

timeInState() 

Returns the time duration as Real 

in [s] since a transition was made 

to the currently active state. This 

function can only be used in 

transition conditions of state ma-

chines not present in states of 

higher level state machines. 

 

2.4 Immediate and Delayed Transitions 

If we attempt to simulate the state machine in Figure 

1 with transitions having immediate=true, we get the 

error message in Dymola: 
An algebraic loop involving Integers or 

Booleans has been detected. 

The reason is that since the transition conditions 

involve i, the variable defined in the equations, there 

is a cyclic dependency or algebraic loop between the 

update equations for i and the update equations for 

state machine evolution. 

2.5 Conditional Data Flows 

An alternative to using outer output variables is to 

use conditional data flows. Since instances of blocks 

can be used as states of a state machine, the connec-

tion semantics of Modelica has been extended to al-

low several outputs to be connected to one input. 

Consider the combined state machine and data 

flow diagram in Figure 4: 

 

 
Figure 4. Combined state machine and data flow 

diagram 

 

The states are instances of the block: 
 

block Increment 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
  parameter Integer increment; 
equation  
  y = u + increment; 
end Increment; 

 

with increment values 2 and -1 respectively. The 

outputs are connected to a protected connector called 

i in order to be able to use i in the transition condi-

tions. The connector i is connected to an instance of 

the block: 

 
block Prev 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
equation  
  y = previous(u); 

state1

state2

a

2: b

3: c

4: d
5: e

add2

sub1

prev
i > 10

i < 1

i
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end Prev; 

 

The connections from the state instances to i in Fig-

ure 4 are handled in a special way. It is possible to 

connect several outputs to inputs if all the outputs 

come from states of the same state machine. In such 

cases, we get the following constraint equations: 

u1 = u2 = … = y1 = y2 = … 

with ui inputs and yi outputs. The semantics is de-

fined as follows. Introduce a variable v representing 

the signal flow and rewrite the equation above as a 

set of equations for ui and a set of assignment equa-

tions for v:  

v := if activeState(state1) then y1 else last(v); 

v := if activeState(state2) then y2 else last(v); 

… 

u1 = v 

u2 = v 

… 

 

The merge of the definitions of v is then made ac-

cording to section „Merging Variable Definitions‟. 

The result of the merge is: 

v = if activeState(state1) then y1  

        elseif activeState(state2) then y2  

        elseif … else last(v) 

… 

Plotting i shows the same behavior as the plot of i of 

the example using inner outer declarations. 

3 Hierarchical State Machine  

Example 

Consider the hierarchical state machine in Figure 5: 

 

 

Figure 5. Hierarchical state machine 

 

The model demonstrates the following properties: 

 state1 is a meta state with two parallel state ma-

chines in it.  

 stateA declares v as „outer output‟. state1 is on 

an intermediate level and declares v as „inner 

outer output‟, i.e. matches lower level outer v by 

being inner and also matches higher level inner v 

by being outer. The top level declares v as inner 

and gives the start value. 

 count is defined with a start value in state1. It is 

reset when a reset transition (v>=20) is made to 

state1. 

 stateX declares the local variable w to be equal 

to v declared as „inner input‟. 

 stateY declares a local counter j. It is reset at 

start and as a consequence of the reset transition 

(v>=20) from state2 to state1. However, the reset 

of j is deferred until stateY is entered by transi-

tion (stateX.i>20) although this transition is not a 

reset transition. This is done by marking that sta-

teY should be reset when making the reset tran-

sition v>=20 and deferring the reset until stateY 

is actually entered. Synchronizing the exit from 

the two parallel state machines of state1 is done 

by using a synchronized transition. 
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The behavior of the state machine can be seen in the 

plots of v and w and i of Figure 6: 

 

Figure 6. Behavior of hierarchical state machine 

4 Adaptive Cruise Control Example 

As a more useful example, we will consider a vehicle 

with adaptive cruise control, i.e. controller that can 

drive the car at a certain speed or follow the car in 

front at a safe distance.  

The example is simplified considerably to be able 

to explain all the details in limited space. And the 

data is just designed for illustrative purposes. 

The vehicle dynamics is described by the follow-

ing model (without annotations): 

 
model Vehicle 
  parameter Real k=5000; 
  parameter Real m=1000; 
  parameter Real loss=5; 
  Modelica.Blocks.Interfaces.RealInput ud; 
  Modelica.Blocks.Interfaces.RealOutput xd; 
  Modelica.Blocks.Interfaces.RealOutput vd; 
 

  Modelica.SIunits.Distance x(start=0, fixed=true); 
  Modelica.SIunits.Velocity v(start=0, fixed=true); 
  Real tau; 
equation  
  der(x) = v; 
  m*der(v) = k*tau - loss*v*abs(v); 
 

  tau = hold(ud); 
  xd = sample(x, Clock(1, 10)); 
  vd = sample(v, Clock(1, 10)); 
end Vehicle; 

 

The power train is considered ideal. 

A vehicle with the cruise control system is shown 

in Figure 7. It has an instance of the vehicle dynam-

ics (with a car icon) with a sampled input ud on the 

left and two sampled outputs (period=1/10 second), 

xd and vd (counting from the top) to the right. 

 

 
Figure 7. Vehicle with adaptive cruise controller 

 

The top level state machine has two modes: normal 

and emergency. Both produces the control signal u 

connected to ud of the vehicle. The normal mode has 

vd and xrel as inputs. xrel is formed as the difference 

between the vehicle position and the position of the 

vehicle in front, available as an input.  

The normal state has three states: manual, cruise 

and follow. The manual state is a simple start up state 

“stepping on the gas” until the desired speed has 

been achieved. The cruise state contains a speed con-

troller implemented as a simple P-controller with 

limitation. 

When the vehicle comes within 100 meters of the 

vehicle in front, follow state is entered. It contains a 

position controller with xref=-100. Since the vehicle 

is essentially a double integrator from throttle to po-

sition, a PD controller is needed. In this case a naïve 

implementation without filtering is shown. When the 

distance is larger than 150 meters, cruise mode is 

reentered. 

The emergency state is entered when the distance 

to the car in front is less than 25 meters independent-

ly in which substate normal is in. Maximum braking 

power (-3) is then applied until the car has stopped. 

When the distance is again 200 meters, the normal 
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state is entered with a reset transition, i.e. the sub-

state of manual of state normal is activated. 

The architecture with two entirely different con-

trollers for speed and position was chosen to illu-

strate the possibility in particular regarding how the 

data flow connections can be used. (Adaptive cruise 

control can also be achieved using a cascade control-

ler with an inner speed loop.) 

A model of a platoon of 5 CruisingVehicles was 

built. The desired speed vref is set as {100, 60, 65, 

50, 25} km/h. The initial speeds are the same except 

for the last car (cruisingVehicle) which is standing 

still. The distances between the cars are 200 meters. 

The results of simulation are shown in Figure 8: 

position on top and velocity below. All cars slow 

down to follow the first car (cruisingVehicle4) at 25 

km/h at a distance of 100 meter. 

 

 
Figure 8. Positions and velocities of vehicles 

in a platoon 

 

The control signals are shown in Figure 9. 

   
Figure 9: Control signals 

  

The implementation of the cruise state shown in Fig-

ure 7 is a bit simplified using a parameter vref for the 

velocity set point. Usually, the triggering of going 

from manual to cruise mode is done by a button. The 

cruise mode is then picking up the current speed and 

uses that as a set point. Such an implementation can 

be made as follows: 

 
model Cruise 
  parameter Real K = 1; 
  Real c, vref; 
  Boolean reinit(start=true) = false; 
  Modelica.Blocks.Interfaces.RealOutput u; 
  Modelica.Blocks.Interfaces.RealInput v; 
equation  
  vref = if previous(reinit) then v else previous(vref); 
  c = K*(vref-v); 
  u = max(min(c, 1),-0.5); 
end Cruise; 

 

This is a general modeling idiom for special treat-

ment when a state is entered. The equation for reinit 

is reinit = false. However, the start value is true, so 

previous(reinit) gives a pulse at the first cycle if a 

reset transition is made to the state. 

So the desired behavior is achieved by a reset 

transition from manual to cruise, but a non-reset 

transition from follow to cruise, since in the last 

case, the stored vref should be used.  

A platoon of 100 vehicles can easily be con-

structed using an array of CruisingVehicles: 

 
model Platoon 
  parameter Integer n=100; 
  CruisingVehicle cruisingVehicle[n](vref=linspace(100, 50.5, n)); 
  Modelica.Blocks.Sources.Constant const(k=10000); 
equation  
  connect(const.y, cruisingVehicle[n].xFront); 
  for i in 1:n-1 loop 
    connect(cruisingVehicle[i+1].xd,  

                  cruisingVehicle[i].xFront); 
  end for; 
end Platoon; 
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This is a good example of how well the state ma-

chine concept is integrated in Modelica allowing to 

use data flows between states, using modifiers for 

parameterization, using redeclare of classes and 

components and using arrays of a mixture of state 

machines and continuous dynamical models. 

5 State Machine Semantics 

This section is not intended for normal users of 

Modelica state machines. It is included since the pre-

cise semantics can be described using only 13 Mod-

elica equations and is thus a convenient reference for 

advanced users and tool developers. 

For the purpose of defining the semantics of state 

machines, assume that the data of all transitions are 

stored in an array of records, t: 

 
record Transition 
  Integer from; 
  Integer to; 
  Boolean immediate = true; 

  Boolean reset = true; 

  Boolean synchronize = false; 
  Integer priority = 1; 
end Transition; 

 

The transitions are sorted with lowest priority num-

ber last in the array. The states are enumerated from 

1 and up. The transition conditions are stored in a 

separate array c[:] since they are time varying. 

The semantics model is a discrete-time system 

with inputs {c[:], active, reset}, outputs {activeState, 

activeReset, activeResetStates[:]} and states 

{nextState, nextReset, nextResetStates[:]}. For a top 

level state machine, active is always true. For sub-

state machines, active is true only when the parent 

state is active. For a top level state machine, reset is 

true at the first activation only. For sub-state ma-

chine, reset is propagated from the state machines 

higher up.  

5.1 State Activation 

The state update starts from nextState, i.e.,what has 

been determined to be the next state at the previous 

time. selectedState takes into account if a reset of the 

state machine is to be done.  
 

  output Integer selectedState =  

    if reset then 1 else previous(nextState); 

 

The integer fired is calculated as the index of the tran-

sition to be fired by checking that selectedState is the 

from-state and the condition is true for an immediate 

transition or previous(condition) is true for a delayed 

transition. The max function returns the index of the 

transition with highest priority or 0. 

 
  Integer fired =  

    max(if (if t[i].from == selectedState then (if t[i].immediate 

    then c[i] else previous(c[i])) else false) then i else 0  

    for i in 1:size(t,1)); 

 

The start value of c is false. This definition would 

require that the previous value is recorded for all 

transitions conditions. Below is described an equiva-

lent semantics which just requires to record the value 

of one integer variable delayed. The integer imme-

diate is calculated as the index of the immediate 

transition to potentially be fired by checking that 

selectedState is the from-state and the condition is 

true. The max function returns the index of the tran-

sition with true condition and highest priority or 0. 
 

  Integer immediate =  

    max(if (if  t[i].immediate and t[i].from == selectedState then 

     c[i] else false) then i else 0 for i in 1:size(t,1)); 

 

In a similar way, the Integer delayed is calculated as 

the index for a potentially delayed transition, i.e. a 

transition taking place at the next clock tick. In this 

case the from-state needs to be equal to nextState: 
 

  Integer delayed =   

    max(if (if not t[i].immediate and t[i].from == nextState  then 

     c[i] else false) then I else 0 for i in 1:size(t,1)); 

 

The transition to be fired is determined as follows, 

taking into account that a delayed transition might 

have higher priority than an immediate: 
 

  Integer fired = max(previous(delayed), immediate); 

 

nextState is set to the found transitions to-state: 
 

  Integer nextState = if active then (if fired > 0 then t[fired].to 

     else selectedState) else previous(nextState); 

 

In order to define synchronize transitions, each state 

machine must determine which are the final states, 

i.e. states without from-transitions and to determine 

if the state machine is in a final state currently: 
 

  Boolean finalStates[nStates] =  

    {max(if t[j].from == i then 1 else 0 for j in 1:size(t,1)) == 0 

     for i in 1:nStates}; 

  Boolean stateMachineInFinalState = finalStates[activeState]; 

 

To enable a synchronize transition, all the stateMachi-

neInFinalState conditions of all state machines within 

the meta state must be true.  
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5.2 Reset Handling 

A state can be reset for two reasons: 

 The whole state machine has been reset from its 

context. In this case, all states must be reset, and 

the initial state becomes active. 

 A reset transition has been fired.  

Then, its target state (and its sub-state machines) 

are reset, but not other states. 

 

The first reset mechanism is handled by the activeRe-

setStates and nextResetStates vectors. The state machine 

reset flag is propagated and maintained to each state 

individually: 
 

  output Boolean activeResetStates[nStates] =  

    {if reset then true else previous(nextResetStates[i])  

    for i in 1:nStates}; 

 

until a state is eventually executed, then its corres-

ponding reset condition is set to false: 
 

  Boolean nextResetStates[nStates] = if active then  

    {if activeState == i then false else activeResetStates[i]  

    for i in 1:nStates} 

 

The second reset mechanism is implemented with 

the selectedReset and nextReset variables. If no reset 

transition is fired, the nextReset is set to false for the 

next cycle. 

5.3 Activation handling 

The execution of a sub-state machine has to be sus-

pended when its enclosing state is not active. This 

activation flag is given as a Boolean input active. 

When this flag is true, the sub-state machine main-

tains its previous state, by guarding the equations of 

the state variables nextState, nextReset and 
nextResetStates.  

5.4 Semantics Summary 

The entire semantics model is given below: 
 

model StateMachineSemantics "Semantics of state machines" 
  parameter Integer nStates; 
  parameter Transition t[:]   

    "Array of transition data sorted in priority"; 
  input Boolean c[size(t,1)]  

    "Transition conditions sorted in priority"; 

  Boolean active "true if the state machine is active"; 
  Boolean reset "true when the state machine should be reset"; 

 
  Integer selectedState = if reset then 1 else previous(nextState); 
  Boolean selectedReset = if reset then true  

      else previous(nextReset); 
 

// For strong (immediate) and weak (delayed) transitions 
  Integer immediate = max(if (if t[i].immediate and t[i].from == 

       selectedState then c[i] else false) then i else 0  

      for i in 1:size(t,1)); 

 
  Integer delayed = max(if (if not t[i].immediate and t[i].from == 

       nextState then c[i] else false) then i else 0 for i in 1:size(t,1)); 

 
  Integer fired = max(previous(delayed), immediate); 
  output Integer activeState = if reset then 1  

      elseif fired > 0 then t[fired].to else selectedState; 
  output Boolean activeReset = if reset then true  

      elseif fired > 0 then t[fired].reset else selectedReset; 
 

// Update states 
  Integer nextState = if active then activeState  

      else previous(nextState); 
  Boolean nextReset = if active then false  

      else previous(nextReset); 
  

// Delayed resetting of individual states 
  output Boolean activeResetStates[nStates] = {if reset then true 

       else previous(nextResetStates[i]) for i in 1:nStates}; 
  Boolean nextResetStates[nStates] = if active then  

      {if selectedState == i then false else activeResetStates[i]  

      for i in 1:nStates}  

      else previous(nextResetStates); 

 
  Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0 

       for j in 1:size(t,1)) == 0 for i in 1:nStates}; 

  Boolean stateMachineInFinalState = finalStates[activeState]; 

end StateMachineSemantics; 

6 Comparison to Other State Ma-

chine Formalisms 

State machines needed to be introduced in Modelica 

to enable modeling of complete systems. Several 

attempts have been made: (Mosterman et. al. 1998), 

defines state machines in an object-oriented way 

with Boolean equations. A more powerful state ma-

chine formalism was introduced in StateGraph (Otter 

et. al. 2005). A prototype mode automata formalism 

was implemented (Malmheden et. al. 2008) using a 

built-in concept of modes. Certain problems of po-

tentially unsafe models in StateGraph were removed 

in the StateGraph2 library (Otter et. al. 2009). These 

efforts showed that state machine support must be 

natively supported in the language.  

The presented state machines of Modelica 3.3 

have a similar modeling power as Statecharts (Harel, 

1987) and State Machine Diagrams of SysML (Frie-

denthal 2008).  

The semantics of the state machines defined in 

this paper is inspired by mode automata (Maraninchi 

2002) and basically the same as Lucid Synchrone 3.0 

(Pouzet 2006), or its clone LCM (Logical Control 

Module) (Gaucher et.al. 2009). Some minor proper-

ties are different compared to Lucid Synchrone 3.0, 
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in particular regarding transition conditions. Lucid 

Synchrone has two kinds of transitions: namely 

“strong” and “weak”. Strong transitions are executed 

before the actions of a state are evaluated while weak 

transitions are executed after. This can lead to sur-

prising behavior, because the actions of a state are 

skipped if it is activated by a weak transition and 

exited by a true strong transition. For this reason, the 

state machines in Modelica use “immediate” (= the 

same as “strong”) and “delayed” transitions. Delayed 

transitions are “immediate” transitions where the 

condition is automatically delayed with an implicit 

previous(...).  

Note that safety critical control software in air-

crafts is often defined with such kind of state ma-

chines, such as using the Scade 6 Tool Suite from 

Esterel Technologies (Dormoy 2008) that provides a 

similar formalism as Lucid Synchrone, with minor 

differences such as the ability to associate actions to 

transitions in addition to states. Scade also provides 

synchronize semantics by means of synchronization 

transitions between several parallel sub-state ma-

chines being in states which have been declared fi-

nal. 

Stateflow (Mathworks 2012), while being very 

expressive, suffers from “numerous, complex and 

often overlapping features lacking any formal defini-

tion”, as reported by (Hamon, et.al, 2004). 

The presented Modelica approach has the impor-

tant feature that at one clock tick, there is only one 

assignment to every variable (for example, it is an 

error if state machines are executed in parallel and 

they assign to the same variable at the same clock 

tick; such errors are detected at compile-time).  

Modelica, Lucid Synchrone, LCM and Scade 6 

all have the property that data flow and state ma-

chines can be mutually hierarchically structured, i.e. 

that, for example a state of a state machine can con-

tain a block diagram in which the blocks might con-

tain state machines. 

7 Conclusions 

We have described how state machines can be mod-

eled in Modelica 3.3. Instances of blocks connected 

by transitions with one such block marked as an ini-

tial state constitute a state machine. Hierarchical 

state machines can be defined with reset or resume 

semantics, when re-entering a previously executed 

state. Parallel sub-state machines can be synchro-

nized when they reached their final states. Special 

merge semantics have been defined for multiple out-

er output definitions in mutually exclusive states as 

well as conditional data flows. 
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