
Functional Development with Modelica: A Use-Case Analysis

Stefan-Alexander Schneider∗ Tobias Hofmann†

stefan-alexander.schneider@bmw.de hofmann.tobias@me.com

∗ BMW AG, 80788 München, Germany
† TU München, Germany

Abstract

This contribution deals about the development steps
of an embedded controller. The activities of the role
function developer are explained for the simple exam-
ple traffic light controller. The method of virtual inte-
gration is explained to establish short feedback loops.

Keywords: embedded systems; simulation; model-
ing; short feedback loops; co-simulation; virtual inte-
gration; Vee-Model; systems engineering

1 Introduction

The behavior of a dynamic system is in general too
complex to treat by theory or formulas. Several sim-
ulation methods have been established for analyzing
such systems. The virtual integration method is con-
ducted on a model to gain knowledge about the (in-
tended) real system behavior. This abstraction typ-
ically allows to focus on the main properties of the
studied multi-domain system and their effects. These
components require specific domain solvers for me-
chanical, electrical, etc. components. In this con-
text, the term co-simulation has been established. The
virtual integration is based on co-simulation and de-
scribed in [7, 10]. There is a rather huge literature
on the Vee-Model and systems engineering, see e.g.
[1, 6, 12, 9, 4]. For more general introduction see,
e.g., [5, 15, 16].

In the following, we demonstrate how to develop a
control algorithm for an embedded controller design-
ing the entire system - both the plant and the control
components - with the modeling language Modelica.
This approach allows us the modeling and simulation
of the entire system, and thus the validation of the de-
sign decisions in an early phase of the development.

2 Model Example

Traffic is in general a good example for dynamic sys-
tems. The planning of traffic flow includes among oth-
ers the avoiding of traffic jams and the optimization of
traffic flows. No wonder that traffic planing is a cur-
rent political issue as the article Guck mal, wer da fährt
in the Süddeutsche Zeitung of May 15th 2012 shows.
According to this article, the traffic of a city like Mu-
nich is controlled by more than 1.000 traffic lights. All
these traffic lights serve to control the traffic and ar-
range for all traffic participants in some sense optimal
traffic flow and an acceptable (system) behaviour.

Figure 1: The typical sequence of coloured lights, see
table 1.

Figure 1 explains the typical European sequence of
coloured lights, see, e.g., [14].

traffic light meaning
red light do not cross
red and yellow light prepare to cross
green light cross
yellow light if safe to do so, stop

Table 1: The typical sequence of coloured lights and
their meanings.

DOI Proceedings of the 9th International Modelica Conference 347
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

A signal timing plan is a graphical representation of
the traffic light phases for the correspondings traffic
lights, similar to a so-called GANTT chart, see also
Figure 2.

Figure 2: A typical signal timing plan is a graphical
representation of the traffic light phases similar to a
GANTT chart.

Traffic engineering programs like LISA+, see Fig-
ure 3, facilitate a planning processand are especially
developed for intersections with a large number of sig-
nal groups and traffic lights, see, e.g., see [13].

Figure 3: The GUI of the software package LISA+ for
the planning of a specific traffic scenario.

Although the analysis of such systems of traffic
lights contains a number of interessting (non-linear)
mathematical taks, we simplify the considered task to
a single two crossing road intersection. The main rea-
son for this is that we can better study the phases of
the development process for such a simple example.

In this report we therefore restrict to the following
model example: a simple intersection of two roads
with four traffic lights, see Figure 4. According to the
wind rose, the lanes are denoted by North, East, South,
and West.

Figure 4: A simple road junction serves as for this pa-
per sufficiently model example where the road crosses
a north-south direction with a road in east-west direc-
tion.

We describe and study in the following sections a
workflow with its development phases for an embed-
ded control system for the traffic lights, using among
other the environment design, modeling and simula-
tion language Modelica and its modeling and simula-
tion tool Dymola.

3 The Development Phases

The development phases of the Vee-model that are
considered in this paper are, see Figure 4, [17]: sys-
tem level requirements, system design, module design,
module implementation, module integration and test
and finally system integration and test on an embed-
ded controller.

Figure 5: The Vee-model and its development phases.

Functional Development with Modelica: A Use-Case Analysis

348 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

3.1 System Level Requirements

In this development phase we formulate the require-
ments to the system and with that to the controller to
be developed.

For this purpose, we define the waiting time Wi of
a single vehicle crossing as the time from arrival at
the intersection to the crossing of the intersection and
with that leaving the system. We define the total wait-
ing time by the overal sum W = ∑Wi and formulate
with that the first requirement to the intended control
algorithm:

∆W :=Wnew−Wold →min, (1)

where Wnew denotes the overall waiting time of all ve-
hicles after and Wold before the considered cycle of
green phases. Although Wnew and Wold are hard to
measure, the difference ∆W , however, is not: the dif-
ference is depending on the number of vehicles cross-
ing the intersection in the considered green phase cy-
cle. This first requirement has the consequence that
control algorithms with so-called vacant green phases
are rated worse.

Let us now assume a scenario with high traffic rate.
In this case, there exists a simple strategy to avoid va-
cant green phases by just not switching the priority
lane. A controller that serves only one direction has
no vacant green time and therefore fulfills the first re-
quirement.

We formulate therefore a second requirement to pre-
vent this undesirable behavior:

Both directions are to be served periodically. (2)

We denote the green times tNorthSouth and tEastWest for
the two directions, the minimum green time by and tmin

and the circulation time tClock by the sum of all traffic
lights phases. Therefore holds

0 < tmin ≤ tNorthSouth, tEastWest < tClock (3)

and with that 2 · tmin ≤ tClock.

3.2 Outlook: Additional Requirements from
Functional Safety

Finally, note that there are additional requirements e.g.
from functional safety:

1. emergency control mode: Traffic lights from the
major roads turn off and the traffic lights from the
side streets blink yellow. This indicates that the
proper operation of the traffic lights is not guar-
anteed and supports on the other hand the given
traffic signs.

2. secure on the electrical level: If a light source
is out of order, so none of the directions may be
given the green signal to avoid a so-called hostile
green and it should, if possible, the red signal be
given.

These two additionally requirements stemming from
the functional safety are not in the scope of this paper
and will therefore not be considered in the following.

3.3 System Design

The considerations so far motivate to model the entire
traffic system as a controlled system composed by two
components for

• the plant component consisting of four lanes and

• the controller component calculating the duration
of the green times tNothSouth and tEastWest by an ex-
plicit computation rule from given numbers of the
traffic members provides by the plant component.

Finally, we describe the interfaces. The interfaces
between the plant and the controller component are
given by six real values: four numbers of vehicles in
the waiting queues nNorth, nEast , nSouth, and nWest and
the two green phase values tNorthSouth and tEastWest .

Figure 6: The composition of the system in Modelica.
The symbol above right in the controller indicates the
atomic exectution behavior of the controller compo-
nent.

The definition of the components and its interfaces,
modeled in Modelica see Figure 6, is the first fun-
damental design decision, see the library SAFEDIS-
CRETECONTROL in [11].

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 349
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

3.4 Module Design and Implementation

3.4.1 Component Plant

The component plant simulates an intersection of two
roads, which runs in a north-south and an east-west
direction, see again Figure 4. The four waiting queues
are named by the facing directions North, East, South
and West. We suppose a simple growth model for the
population of the four lanes

ṅ =

{
c− cOut if corresponding lane has green
c else,

(4)
where n≥ 0 denotes nNorth,East,South and nWest and c≥
0 represent the uniform growth constant, and cOut the
additionally decay constant of the waiting queues in
the green phase of the corresponding lane representing
the number of vehicles passing the intersection.

The two opposite lanes are governed by two oppos-
ing traffic lights with the same signal sequence. Note
that we neglect in the following the modeling of the
yellow phase and it holds for the green time phases

tNorthSouth + tEastWest = tClock. (5)

3.4.2 Component Controller

The component controller realizes roughly speaking a
mapping from R4 to R2 fullfilling the requirements (1)
and (2) - consequently, there exists an infinite number
of implementations!

A very simple first strategy to fulfill the require-
ments is distribute the available time tClock equally to
both green phases

tNorthSouth = tEastWest = tClock/2, (6)

see also Figure 7 for the implementation in Modelica.
We initialize the component controller with red

lights for both directions.

3.5 Module Integration and Test

In this phase, we validate the module designs and their
implementations by so-called Model-in-the-loop sim-
ulations before we move on to the next development
phase. Therefore, we analyse given use cases and test
the controll algorithm by virtual integration.

We set for the module test phase the following gen-
eral parameters:

• the minimim green time tMin = 10[s],

• the circulation time tClock = 150[s], and

Figure 7: The implementation of the equations (6) for
the symmetric strategy in Modelica.

• the initial numbers of vehicles in the waiting
queues nNorth = nSouth = 100[1] and nEast =
nWest = 50[1].

3.5.1 First Use Case: Equally Busy Lanes

In this use case, we assume that both roads north-south
and east-west are equally frequented and chose the fol-
lowing use case specific parameters

• the growth constants cEastWest = cNorthSouth =
1
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

Because it holds for the growth and decay constants

cEastWest + cNorthSouth ≤ cOut , (7)

there may pass more vehicles through the intersection
than new ones join in the waiting queues. We therefore
expect a good controller to reduce the waiting queues
over time.

Figure 8 shows the signal time plan corresponding
to Figure 2. The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues is given
in the Figure 9.

This Model-in-the-loop simulations confirms the
symmetric control strategy as expected. We therefore
study a further asymmetric use case to test our first im-
plementation.

Functional Development with Modelica: A Use-Case Analysis

350 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

Figure 8: The signal time plan of the first use case.

Figure 9: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
first use case.

3.5.2 Outlook: System Simulation

As an outlook, we mention here, that Modelica pro-
vides further tools for simulations like a full system
simulation. The toolbox Modelica3D allows to visual-
ize the full intersection. Figure 10 provides a picture
of a movie produced by Modelica3D. For further de-
tails see [3, 2].

3.5.3 Second Use Case: Main and Secondary
Road

We change the first use case only slightly and then sim-
ulate a scenario in which the north-south road is less
traveled than the east-west road and assume the fol-
lowing parameters

• the growth constants cEastWest = 2
[1

s

]
,

cNorthSouth = 0.2
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

This time, as many vehicles arrive at the intersec-
tions as may pass through the intersection. We expect

Figure 10: This picture of a movie produced by Mod-
elica3D shows the behavior of the system example in-
tersection. The waiting queues are visualized by boxes
with hights depending on the length of the correspond-
ing waiting queue.

a good controller not to increase the number of vehi-
cles in the waitings queues.

The evolution of vehicle values nNorth = nSouth and
nEast = nWest in the waiting queues is again given in
the Figure 11.

Figure 11: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
second use case.

This time, we observe that the North-south road
drops to 0 and remains constant, where as the East-
west road linear increases. The constant green phase
ratio

tNorthSouth : tEastWest = 1 : 1 (8)

obviously does not reflect the asymmetric vehicle
growth ratio

cNorthSouth : cEastWest = 1 : 10 (9)

good enough. This undesirable behavior motivates an-
other requirement for the implementation of the con-
troller algorithm.

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 351
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

3.5.4 Additional Requirement on System Level

We introduce two key indicators:

• the ratio of the waiting queues defined by

rwq := (nNorth +nSouth)/(nEast +nWest) (10)

and

• the ratio of the green phases given by

rgh := tNorthSouth/tEastWest . (11)

We assume that the longer the green phases, the
more vehicles may pass the intersection. In the sense
of the customers of the intersection, we therefore ad-
ditionally require

rwq ≈ rgh. (12)

3.5.5 Module Design and Implementation for the
alternative Controller

In this section, we develop a second, alternative con-
troller, and solve therefore the system of equations
(5) and (12) to fullfill mathematical exact the require-
ments. We define the load distribution for the two
roads

λ :=
nEast +nWest

nNorth +nEast +nSouth +nWest
. (13)

The value λ = 0 = 0% reflects no traffic in east-west
direction and consequently minimum green time for
east-west and λ = 1 = 100% correspondingly for the
other direction. Then, keeping in mind the mimimum
green time requirement (3), this yields to

tEastWest = min(tClock− tMin,max(tMin,λ · tClock))

tNorthSouth = tClock− tEastWest ,
(14)

see also Figure 12 for the implementation in in Mod-
elica.

The so designed controller has the following desir-
able properties:

λ = 0 : tEastWest = tMin,

λ = 1 : tEastWest = tClock− tMin
(15)

with corresponding

tNorthSouth = tClock− tEastWest . (16)

Figure 12: The implementation of the alternative con-
trol algorithm given by (14) in Modelica.

Figure 13: The signal time plan the alternative control
algorithm given by (14) in Modelica.

3.5.6 Module Test and Integration of the alterna-
tive Controller

Figure 13 shows the results of the Model-in-the-loop
simulation of the second implementation of the con-
troller for the second use case.

Figures 14 and 15 present the evolution of the num-
ber of vehicles and the green phases.

The alternative controller responds to the asymmet-
ric load much better. After a transient phase the ratio
of the green phase 1 : 10 reflects the ratio of the loads
1 : 10 almost perfectly.

3.5.7 Regression of the First Use Case

Also the first use case can be controlled by the alter-
nate controller. Although it produces, in contrast to the
first controller, a small oscillation, but remain limited
to vehicle values.

A simple validation shows that the second controller
also produces the expected behaviour for the first use

Functional Development with Modelica: A Use-Case Analysis

352 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

Figure 14: The evolution of the numbers of vehicles
for the second use case main and secondary road with
the second implementation of the controller.

Figure 15: The evolution of the green phases for the
second use case main and secondary road with the
second implementation of the controller.

case, see Figure 16.

3.6 System Integration and Test

In the last phase of the system development, we in-
tegrate the validated control algorithm in an evalu-
ation board (MicroController with 80 MHz, 512KB
Flash, 32KB RAM, USB) and development environ-
ment MPLAB Version 8.84 from Microchip Technol-
ogy Inc., see Figure 17.

The presented approach differs from the method de-
scribed in [8], where the control system is executed
part on a PC, and part on a microcontroller board.

The relevant code fragment of the from Dymola
produced file dsmodel.c can easily be identified for
this specific controll development and integrated in the
environment of the microcontroller code. This trans-
formation can be performed automatically by a phyton
script.

The Processor-in-the-loop simulations reflect in de-

Figure 16: The evolution of the vehicle numbers for
the first use case with the second controller, compare
with Figure 9.

Figure 17: The PIC32 Starter KIT for the Processor-
in-the-loop simulations showing the green LED repre-
senting the green traffic light.

tail the observed Model-in-the-loop results.

4 Conclusion

The application of the virtual integration has many ad-
vantages because it allows the observation of the be-
havior of a fully integrated system in an early devel-
opment phase. Realistic tests in the early phase of
development by virtual integration enables compre-
hensive evaluation of the interaction of a) functions,
b) components, c) tools, and d) decision makers and
allows a seamless, continuous development process.
The method virtual integration allows therefore inte-
gration of new technologies and domains.

The following questions arises: How can we sys-
tematically identify other development-related interac-
tions? This remains for future work.

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 353
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

References

[1] Adolf-Peter Bröhl and Wolfgang Dröschel. Das
V- Modell. Der Standard in der Softwareentwick-
lung mit Praxisleitfaden. Oldenbourg R. Verlag,
September 1995. ISBN 978-3-348622-207-4.

[2] C. Höger et al. Homepage Modelica3D, 2012.
[Online; Status 24 May 2012].

[3] C. Höger et al. Modelica3D - Platform Inde-
pendent Simulation Visualization (submitted). In
Modelica Conferene 2012 & Conference Pro-
ceedings.

[4] R. Haberfellner, Olivier L. de Weck, E. Fricke,
and S. Vössner. Systems Engineering – Grund-
lagen und Anwendungen. Orell Füssli Verlag,
Zurich, 12th edition edition, January 2012. ISBN
978-3-85743-998-8.

[5] Thomas Huckle and Stefan-Alexander Schnei-
der. Numerische Methoden: Eine Einführung für
Informatiker, Naturwissenschaftler, Ingenieure
und Mathematiker. Springer, 2006.

[6] IABG. V-Modell, 2004. [Online; Stand 24. Mai
2012].

[7] Andreas Maier and Stefan-Alexander Schneider.
Analyse des Einflusses der Co-Simulation bei
der Modellintegration. Tagungsband ASIM 2011,
2011. ISBN 978-3-89967-733-1.

[8] Marco Bonvinia, Filippo Donidab, Alberto Leva.
Modelica as a design tool for hardware-in-the-
loop simulation. Technical report, Dipartimento
di Elettronica e Informazione, Politecnico di Mi-
lano, 2009.

[9] Richard Harwell. Systems Engineering, A Way
of Thinking, A Way of Doing Business, En-
abling Organized Transition from Need to Prod-
uct, 1997. [Online; August 1997].

[10] Stefan-Alexander Schneider, B. Schick, and
H. Palm. Virtualization, Integration and Simula-
tion in the Context of Vehicle Systems Engineer-
ing. In Embedded World 2012 Exhibition & Con-
ference Proceedings. Weka Fachmedien, 2012.

[11] Stefan-Alexander Schneider, B. Thiele, and
P. Mai. A Modelica Sub- and Superset for Safety-
Relevant Control Applications (accepted). In
Modelica Conferene 2012 & Conference Pro-
ceedings.

[12] Tim Weilkiens. Die rolle des systems-
engineerings.

[13] Wikipedia. LISA+ — Wikipedia, Die freie En-
zyklopädie, 2011. [Online; Stand 28. März
2012].

[14] Wikipedia. Signalzeitenplan — Wikipedia, Die
freie Enzyklopädie, 2011. [Online; Stand 28.
März 2012].

[15] Wikipedia. Systems Engineering — Wikipedia,
the free encyclopedia, 2012. [Online; Status 13
May 2012].

[16] Wikipedia. V-Modell — Wikipedia, Die freie
Enzyklopädie, 2012. [Online; Stand 29. März
2012].

[17] Wikipedia. V-Modell — Wikipedia, the free en-
cyclopedia, 2012. [Online; Status 18. Juni 2012].

Acknowledgments

The authers hereby thank C. Höger from TU Berlin
for the animation of the intersection in Figure 10 with
Modelica3D and last but not least B. Thiele from DLR
for the modeling of the controll algorithms, e.g., in
Figure 6 using the library SAFEDISCRETECONTROL,
see [11].

Functional Development with Modelica: A Use-Case Analysis

354 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

	Introduction
	Model Example
	The Development Phases
	System Level Requirements
	Outlook: Additional Requirements from Functional Safety
	System Design
	Module Design and Implementation
	Component Plant
	Component Controller

	Module Integration and Test
	First Use Case: Equally Busy Lanes
	Outlook: System Simulation
	Second Use Case: Main and Secondary Road
	Additional Requirement on System Level
	Module Design and Implementation for the alternative Controller
	Module Test and Integration of the alternative Controller
	Regression of the First Use Case

	System Integration and Test

	Conclusion

