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Abstract 

Fuel tanks in fighter aircraft have an irregular shape 
which is given by a detailed CAD model. To simu-
late a fuel system with sufficient amount of detail to 
solve the design issues, necessary geometrical in-
formation need to be given in a compact and compu-
tationally fast form. A function approximation using 
radial basis functions is suggested and compared 
with some other methods. The complete process 
from production scale CAD model to system simula-
tion model is considered.  
Keywords: aircraft design; fuel systems simulation; 
geometrical representation; surrogate model; radial 
basis functions 

1 Introduction 

A  fighter  aircraft  fuel  system  is  a  system  of  many  
parts.  Fuel  fills  up large parts  of  the aircraft  not  oc-
cupied with other equipment and the many different 
systems of the aircraft often pass through the tanks. 
To keep control of the center of gravity the tanks are 
divided into smaller parts and are interconnected by 
pipes. Fuel is pumped between the tanks to a collec-
tor tank which has a negative g-load compartment to 
enable the aircraft to fly inverted. The tanks are also 
pressurized to avoid evaporation of the fuel at high 
altitudes.  

When designing aircraft fuel systems several is-
sues demand detailed simulation models for analysis. 
The most important are 

  Is it possible to provide the engine with fuel 
with enough pressure regardless of what pi-
lot maneuvers and equipment faults that oc-
cur? 

 Can  the  amount  of  accessible  fuel  be  cor-
rectly determined at all times? 

 Can the structural strength of the hull and all 
installation parts be estimated with good 
precision?   

When  these  problems  are  solved,  questions  re-
lated to optimization of weight, fuel consumption, 
and heat storing capabilities as well as other issues 
need to be considered. 

The fuel system simulation models needed to de-
scribe  the  system  tend  to  be  large  (~400  state  vari-
ables, ~16000 time-varying variables) due to the 
high number of parts involved. The combination of 
fuel (incompressible fluid) and pressurization air 
(compressible fluid) and the necessity to handle both 
fast time constants (as when a tank get full) and slow 
time constants (heat storage) make the models stiff 
and a bit awkward to work with. Still, the informa-
tion gained from using the simulation models more 
than pays off the work spent to keep the models ex-
ecutable and is seen as a prerequisite for successful 
fuel  system  design  work  at  Saab  Aeronautics.  A  
theoretical background on fuel system design can be 
found in  [1] and how Dymola and other simulation 
tools are used in the system design process is de-
scribed in  [2] and  [3]. 
In the past few years the idea of bringing geometrical 
information from CAD models into simulation mod-
els has gone from a distant dream to something actu-
ally achievable. To investigate if it was possible to 
get better accuracy of the fuel tank representation in 
the simulation models used, a study  [4] was made to 
show the feasibility of extracting geometrical infor-
mation from CAD models, do a function approxima-
tion of the data and then use the function in a tank 
model in Dymola. The work is not yet finalized to 
the level of inclusion in production processes, but the 
major steps and an evaluation of results are done. 
The intention is that the accuracy of the simulation 
models shall meet the measurement precision de-
mands on the aircraft, and to improve the efficiency 
of the loads computations while simulation times are 
kept at the same level as before.  
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This  can  be  done  using  two  types  of  model  im-
provements. First, the geometrical representation of 
the  fuel  tanks  is  changed  from  a  simple  two-
dimensional square box to a full three dimensional 
representation of the complex geometry. Next, the 
aircraft model is changed from a point model where 
all accelerations act on the same point to a rigid body 
where accelerations in each tank depend on both the 
accelerations in the aircraft’s center of gravity and 
the torque acting around it. 

 
In this paper the major steps of the procedure will 

be discussed as well as later results showing that the 
process  [4] can be scaled to full production size CA-
TIA models as well as full size fuel simulation mod-
els. 

2 Assumptions 

A  typical  fighter  plane  fuel  tank  has  a  complicated  
shape;  an  example  is  shown  in  Figure  1.  It  is  made  
up of many non-convex surfaces and even internal 
parts where bulky equipment is immersed in fuel. 
Due to the high order of complexity, describing the 
details of the fuel tank geometry in a simulation 
model is not feasible at the moment. 

 
Figure 1 Typical body fuel tank shape, which is one of 
several different basic shapes. Note that equipment is 
immersed in fuel and fills up space within the tank. 

It is assumed that the case is semi-static, such that 
the fuel surface is perpendicular to the acceleration 
vector of the tank at each time instant and that there 
is no fuel sloshing. Although a bit contradictory, it is 
also assumed that the fuel undergoes enough slosh-
ing so that all fuel surfaces of the different compart-
ments  within  the  same  tank  are  at  exactly  the  same  
height, as if they were connected beneath the surface 
(which often is the case). 

The information needed to perform a fuel system 
simulation is, given the orientation of the accelera-
tion vector, the center of gravity of the fuel in a par-
ticular  tank  and  the  position  of  a  point  on  the  fuel  
surface. Both these vectors depend on the volumetric 
amount of fuel in the tank which is connected to the 
fuel mass state variable through the temperature de-
pendent density. This means that it is enough to have 
a function that transforms the four variables 
fuelVolume and the 3D acceleration vector to the six 
variables given by the two 3D vectors representing 
the point on the fuel’s surface and the fuel’s center of 
gravity. The means to represent this function could 
be a  table,  but  the assumption has been made that  a  
function approximation would be both faster and less 
memory consuming.  

3 Geometric data transformation 

The first prerequisite for a fuel system simulation is 
the extraction of the geometric data from CATIA.  

3.1 Extraction of geometric information 

Each fuel tank in the Jas 39 Gripen has its own CAD 
model, and an analysis extracting the center of grav-
ity (CG) and fuel surface data needs to be performed 
on each of them. The analysis itself consists of a 
macro written in VBScript. An early version of it can 
be found in  [4]. In a nutshell, the steps of the analy-
sis are as follows: 

 Transforming the original fuel tank into a 
“dumb” solid, without construction history 
or identifiable individual features. This is 
done in order to reduce the file size, which 
affects the analysis time considerably. 

 Creating the 2 bodies for the analysis: a “ref-
erence” body for comparison purposes and a 
“fuel” body on which the actual analysis will 
be performed. The dimensions of the “refer-
ence” body are recorded and saved. 

 Creating the required elements for the analy-
sis: the acceleration vector line, the section-
ing plane perpendicular to the line which 
will split the “fuel” body in steps of pre-set 
length and the measurements on the “fuel” 
body which will update every time the body 
is sectioned. 

 Performing the actual analysis. For each ac-
celeration vector orientation in the aircraft’s 
maneuverable range, the fuel body is split in 
steps of around 10 liters. For each split the 
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values of the resulting fuel volume, center of 
gravity and of the position of a point on the 
fuel’s surface are saved to a text file. 

3.2 Function approximation of data 

The CATIA step generates around 20,000 to 40,000 
distinct  data  entries  for  each  fuel  tank,  with  10  pa-
rameters each. Although numerous, these are not 
enough since the simulation needs the CG and sur-
face point coordinates for other acceleration vectors 
and volumes, as well. Therefore, a data interpolation 
step is required. To do the interpolation using Dy-
mola interpolation tables would be feasible with a 
small amount of data in a low-dimensional case, but 
the high dimension and the amount of data calls for 
other methods. In this case the data interpolation is 
done using a parameterized function approximation 
called radial basis functions (RBF) networks. They 
are thought to be one of the best ways of approxima-
tion multi-variate scattered data, due to their excel-
lent approximation properties  [5], although in some 
cases vulnerable to the Runge phenomenon  [8]. In 
short, they can be visualized as an "input - process - 
output" system. The input is the data generated from 
CATIA - the X, Y, Z orientations of the acceleration 
vector, the fuel volume, the X, Y, Z coordinates of the 
fuel surface and the corresponding ones of the tank's 
center of gravity. The output is a function, s, which 
can give a good approximation of the data for inputs 
different than the ones where the value of the exact 
function is known. The approximating function is 
defined using fewer points than the ones available in 
the input data (points which will be called centers). 
This means that a data reduction with maintained 
generalization ability is done. For visualization, see 
Figure 2. 

 
Figure 2 The Gaussian functions at the selected centers 
(dash-dotted) and the resulting approximating func-
tion (solid) based on the input data (points). In this 

plot, the Runge phenomenon is visible at the right edge 
of the interval (the solid line drops), but it might also 
be a part of the explanation for the drop of the curve 
around x=5. 
The middle layer, the so-called "process", is defined 
using the RBF functions themselves. The approxi-
mating function xxkfWWxs i

ni
i

...2
1  is 

given by a weighted sum of a uni-variate function f 
with the Euclidian distance between the xi  and x as 
argument, where x are  the  points  at  which  the  ap-
proximation function is calculated, and xi are  the  
centers with respect to which the function is defined. 
The weighting factor Wi is associated to each center 
xi.  It  is  determined  such  that  the  error  between  the  
approximating function and the input data is mini-
mized. The scaling factor k  influences the support 
area of the function f.  
The centers are selected using the orthogonal for-
ward regression algorithm, presented in  [6] and  [7]. 
They could be selected at random, but the algorithm 
uses the modified Gram-Schmidt orthogonalization 
procedure to select the centers which minimize the 
error in the least-squares sense. The benefit of using 
the modified Gram-Schmidt method is that the re-
sulting approximation is sparse in parameters. It 
starts from a large set of potential centers - basically, 
all the data resulting from the CATIA analysis, filter-
ing  them  until  the  error  sinks  below  a  specified  
threshold. To be able to handle the very large data 
sets an approach where the data sets are divided into 
smaller pieces and the results recomputed several 
times is used, see  [4]. When all data is processed, the 
algorithm returns the selected centers and their cor-
responding  weights  and  writes  them  to  a  file  to  be  
used in the dynamic simulation in Dymola. 

All RBF networks work according to the same 
principles. The differing factor is the function f, 
which makes up the linear combination defining the 
approximating function s. The ideal for the fuel tank 
problem, which is local and almost smooth in its na-
ture, is to have a function with local support, so that 
new input data would not influence points situated 
far  from  it.  Several  possible  functions  have  been  
tested to determine which ones are good choices with 
respect  to  sparseness  of  the  parameters  in  the  ap-
proximation and computational speed in the Dymola 
implementation. The typical number of parameters 
of the approximation is in the range 300 to 3000, a 
data reduction of a factor 100 to 1000. 
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A standard choice of a Gaussian function, see Figure 
2, seems to fit the fuel tank problem best. There were 
concerns regarding computational effectiveness in 
Dymola as the exponential function is not considered 
cheap so other choices were considered.  
Using xxr i , the investigated options were 

 the inverse quadratic function, 

21
1
kr

rf  

 the inverse multiquadric function, 

21

1

kr
rf  

 the rational quadratic, 2

2

1
1

r
rrf  

  Wendland's functions, 

otherwise
orrrrrf

,0
)5.0(1,151 5

 

They all give less sparse results and need both more 
memory to store parameters and more multiplica-
tions to compute s(x). Also B-splines outside a RBF 
framework have been considered, but do not fit ide-
ally to high-dimensional non-latticed data.  

3.3 Tank model implementation 

Implementing the radial basis functions in the exist-
ing tank model of the commercial library Aircraft-
FluidSystems (developed mainly by Modelon AB 
and partly by Saab Aeronautics) was a simple task. 
The only modification needed was the replacement 
of the existing distance computation between the 
position of the fuel surface and the tank ports of the 
connected pipes. This is now done using a scalar 
product and the approximating function s(x). 

The change in the acceleration vector definition 
brought by viewing the aircraft as a rigid body in-
stead of a point mass was also straightforward. 

4 Results 

4.1 Influence on accuracy 

A comparison between two fuel system simulations 
performed using the old two-dimensional tank repre-
sentation and two simulations incorporating the new 
three-dimensional representation is presented in [4]. 
Both  the  2D  and  3D  simulations  are  performed  for  
two levels of accuracy of the CATIA analysis. The 
results show that there is only a minor difference in 
the system simulation precision between the two 

CATIA  target  sampling  accuracies  of  18  and  12  li-
ters.  Compared  to  the  CAD  measurements  of  three  
different points for several acceleration vectors, the 
simulations resulted in an error of 3.3 kg for the 18 l 
precision (with a maximum error of 10 kg) and a 3.1 
kg error for the 12 l precision (with a maximum error 
of 6 kg). For the two-dimensional tank representation 
the same average difference is 42 kg (with a maxi-
mum of 89 kg). It then follows that a three-
dimensional representation of a moderate size makes 
a large improvement in the simulation accuracy of 
the fuel measurements. Comparison with a real fuel 
tank is not achievable since the tanks are not yet 
built, but it has been shown earlier that ‘fuel meas-
urements’ in CAD models correspond well with fuel 
sensor calibration measurements in built tanks. 
This accuracy improvement affects all parts of the 
fuel system simulation model, as the fuel flow 
through pumps and pipes depends on the fuel level in 
each tank. 

4.2 Influence on simulation times 

A comparison between the different possible kernel 
functions revealed that the initial choice of the Gaus-
sian was the correct one. The evaluated functions, 
along with their training, computation times in 
MATLAB  and  simulation  times  in  Dymola  for  a  
simple test model are given in Table 1. All the simu-
lations are performed on the same tank, with the 
same parameters (the scaling factor k=0.8 where nec-
essary and the error threshold set at 5 mm). The 
MATLAB computation time take only computation 
of the function s(x) into account, while the Dymola 
simulation time also involves computations of all 
other equations necessary for a tank, two pipes and 
two sources in a test case.  
Table 1 Comparison of training and simulation times 
for different kernel functions 

Function Training 
time, s 

MATLAB 
computation 

time, s 

Dymola 
simulation 

time, s 
Gaussian 36.63 0.84 157 
Inverse 

quadratic 
58.85 1.12 190 

Inverse mul-
tiquadric 

139.26 4.15 161 

Rational 
quadratic 

63.57 1.11 155 

Wendland, r 
< 1.0 mm 

218.13 2.93 158 

Wendland, r 
< 0.5 mm 

318.08 2.95 176 
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As for the variation of the Gaussian function with 
its defining parameters, simulations showed that 
there are optimum values of the scaling factor and of 
the error threshold. Any values different from these 
optimal ones lead to extended simulation times, 
without a significant improvement in accuracy. For 
the simulations with an error value of 0.01 mm, the 
MATLAB training time was between 3000 and 
4000s, while for errors of 1 mm it dropped to several 
hundreds of seconds. The Dymola simulation results 
are summarized in Table 2. If the Runge phenome-
non influences the function approximation, the simu-
lation times easily grow a factor 10 or more, so care 
must be taken to avoid it. 
Table 2 Dymola simulation times for different Gaus-
sian settings 
Settings Dymola simulation time, s 
k = 0.05, err= 0.01 166 
k=0.4, err = 0.01 182 
k = 0.8, err = 0.01 177 

 
When a complete fuel system simulation model with 
four three-dimensional tank representations is com-
pared to the same model having two-dimensional 
tank  representations  the  times  in  Table  3  are  
achieved. The translation/compilation time depends 

strongly on the number of defining parameters re-
quired by the function approximation, which is a rea-
son to use sparse representations. The simulation 
time only grows by a factor 3, which is considered to 
be successful, given the higher accuracy of the re-
sults. The comparison case is representative of a 
typical simulation analysis.  
Table 3 Comparison of simulation times 
 Translation/compilation 

time (min) 
Simulation 
time (min) 

2D tank 1.5 10 
3D tank 10.5 30 

 

4.3 Influence on system insight 

An animation of the tank models was implemented 
in order to identify what can be achieved, see Figure 
4. This addition proved to be worthwhile from the 
very first simulations. The insight into the system 
behavior it provides shortens the time to learn the 
system. It is also a fast means of finding errors. For 
instance, one of the easiest errors to perform and 
most difficult to find is orienting the acceleration 
vector the wrong way. This can easily occur since 

Figure 3 Visualization/animation of the fuel system using graphics from CATIA and simulation  re-
sults from the fuel system simulation model. The green and black surfaces show the fuel level in the 
tanks. The yellow arrows show the acceleration vector for each tank and the colored balls show inlets 
and outlets of pipes for different purposes. 
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different departments use different coordinate sys-
tems and boundary conditions for simulations have 
many different sources. But in the animation this 
error is easily detected. 

5 Conclusions 

A full geometrical representation of fuel tanks at a 
given accuracy tailor made to accommodate fuel sys-
tem simulation is no more a distant dream but a fully 
achievable task. The work has shown that 

 it is possible to achieve an appropriate level 
of accuracy for all intended design studies,  

 it is important to get a sparse representation 
(to keep the translation/compilation time 
down),  

 several different choices of radial basis func-
tions  are  usable  and  that  the  Gaussian  is  
comparable to the others with respect to 
simulation time, but give more sparse repre-
sentations,  

 care is needed to avoid the Runge phenome-
non  [8] (which may slow down simulations 
considerably when the fuel level is close to a 
pipe end), and  

 using RBF as function approximation keeps 
simulation times in the same level of magni-
tude as the simple and much less accurate 
2D square box approximation previously 
used. 

6 Acknowledgements 

Jonas Wikström (Linköpings University) has dedi-
cated his master’s project to this project at Saab 
Aeronautics. 
Sara Ekermann (Linköpings University) has worked 
with visualization and large-scale testing of results.  
Thanks to Dassault Systémes who has provided an 
evaluation license for the work in Catia as well as 
acted discussion partner of what is achievable. 

References 

[1] Gavel. H. (2007) On Aircraft Fuel Systems 
– Conceptual Design and Modeling. Dis-
sertation No.1067, Division of Machine 
Design, Department of Mechanical Engi-
neering, Linköpings University. ISBN 978-
91-85643-04-2 

[2] Lind. I. & Andersson. H. (2011) Model 
Based Systems Engineering for Aircraft 
Systems – How does Modelica Based Tools 
Fit? In proceedings of the 8th International 
Modelica Conference, Dresden, 2011 

[3] Steinkellner S., Andersson H., Gavel H. 
and Krus P. Modeling and simulation of 
Saab Gripen’s vehicle systems, AIAA 
Modeling and Simulation Technologies 
Conference, Chicago, USA, AIAA 2009-
6134, 2009 

[4] Wikström J., 3D Model of Fuel Tank for 
System Simulation: A methodology for 
combining CAD models with simulation 
tools, Masters thesis LIU-IEI-TEK-A—
11/01201—SE, Linköpings University, 
2011, 
http://urn.kb.se/resolve?urn=urn:nbn:se:li
u:diva-71370 

[5] Buhmann, M. D. Radial Basis Functions, 
Acta Numerica (2000) 1—38. 

[6] Chen. S., Billings. S.A. & Lou. W. (1989) 
Orthogonal least squares methods and 
their application to non-linear system iden-
tification. Internal Journal of Control, 50:5, 
1873 -1896  

[7] Chen. S., Billings. S.A., Cowan. C.F.N. & 
Grant. P.M. (1990) Practical identification 
of NARMAX models using radial basis 
functions. Internal Journal of Control, 52:6, 
1327 -1350 

[8] Boyd, J.P., Six strategies for defeating the 
Runge Phenomenon in Gaussian radial ba-
sis functions on a finite interval. Com-
puters and Mathematics with Applications, 
60 (2010), 3108-3122.  

 

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system … 

 

338 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076333 


