
Fast Simulation of Fluid Models with Colored Jacobians

Willi Brauna Stephanie Gallardo Yancesb Kilian Linkb Bernhard Bachmanna

aUniversity of Applied Sciences Bielefeld, Bielefeld, Germany
bSiemens AG, Energy Sector, Erlangen

Abstract

The industrial usage of the open-source Modelica tool
OpenModelica was limited so far for power plant ap-
plications, due to the performance of large fluid sys-
tems. This paper presents some efforts to improve the
simulation time on benchmark fluid models proposed
by Siemens Energy. The main aspects presented here
to achieve a faster simulation are an efficient evalu-
ation of the jacobian matrix by a coloring technique,
that exploits the sparsity pattern of a modelica model.
Therefore the techniques are scratched and applied to
benchmark models provided by Siemens Energy.

Keywords: OpenModelica, Fluid Simulation,
Benchmark, Simulation, Jacobian, Coloring, Sparsity-
Pattern, DASSL

1 Introduction

In power plant applications, detailed analysis of the
dynamic behaviour of heat recovery steam generators
result in very large fluid systems.

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [5] due to
its applicability for multi-domain modeling of phys-
ical systems, the high degree of maintainability of
Modelica models and the possibility of rapid develop-
ment of new components in Modelica.

The commercial tool Dymola is mainly used for
modeling and simulation. The open-source Modelica
enviroment OpenModelica for industrial and academic
usage is getting more and more an alternative and
has the large benefit that it is freely available. Fluid
modeling with Openmodelica was limited by missing
implementation of some special features like Model-
ica.Media. The OpenModelica compiler flattens now
the complete Modelica.Media library. Nevertheless
the missing functions are still replaced in all bench-
mark models by external libraries. In order to make
OpenModelica an established Modelica tool, the ac-
curacy and performance have to be comparable with

Dymola.

The aim of the current paper is to present the im-
provement of the simulation time for special bench-
mark fluid models using an efficient technique to eval-
uate jacobians. The benchmark fluid models are devel-
oped by Siemens AG, Energy Sector, using the com-
mercial Modelica environment Dymola. Siemens En-
ergy has presented fluid models before, which are suit-
able for the benchmark of the accuracy and the perfor-
mance of a Modelica Tool. The complexity of these
models have been further refined to build up realis-
tic plant models like used in daily business and to
reach model sizes which are suitable for performance
tests. On the other hand University of Applied Sci-
ences Bielefeld has developed techniques to generate
symbolic jacobians in OpenModelica before ([4],[3]).
The derivatives are useful for simulating a model as
well as for the sensitivity analysis or the optimization
of models. Further, jacobians are necessary to support
the next FMI1 version 2.0 [1]. In the work before it
was not possible to show improvements for the sim-
ulation. This can be explained mainly by the model
size we had tested our implementation on, this was
caused by the fact that the generation of symbolic ja-
cobians was not applicable to large scale models. This
is solved by generating generic partial derivatives and
utilise them to compute the full jacobains. Here we
catch up and apply the generation of symbolic jaco-
bians on large scale models provided by Siemens En-
ergy [6].

The paper is structured as follows: In section 2 the
usage of the jacobian for the simulation purpose is
specified. Further, the coloring and the determination
of the sparsity pattern are stated and the application of
the coloring to the solving process is described. In sec-
tion 3 there are given some information about the used
benchmark fluid models. Whose perfomance is mea-
sured in section 4. Section 5 summarizes the results of
this paper and gives proposals for future work.

1http://fmi-standard.org/

DOI Proceedings of the 9th International Modelica Conference 247
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

2 Jacobian for Simulation

A Modelica model is typically translated to a basic
mathematical representation of differential and alge-
braic equations (DAEs), before being able to simulate
the model. Further, these DAEs are transformed to
ODEs (ordinary differential equations) with an alge-
braic part, which is the starting point.(

ẋ(t)
y(t)

)
=

(
h(x(t),u(t), p, t)
k(x(t),u(t), p, t)

)
(1)

The jacobian of interest for simulation purpose con-
sists of partial derivatives of the ODE-Block h with
respect to the states.

JA =
∂h
∂x

=

∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...
∂hn
∂x1

. . . ∂hn
∂xn

 (2)

For solving equation 1 with an integration method like
DASSL, the derivatives are needed with respect to the
states x(t) [7]. After all, DASSL uses the iteration ma-
trix

M =
∂h
∂x

+ c j ∗ ∂h
∂ ẋ

(3)

for solving a nonlinear system in each step by a modi-
fied newton method. This matrix M is almost the same
as the partial derivatives with respect to the states be-
side the c j∗ ∂h

∂ ẋ part. But that part is the identity matrix
multiplied with a scalar value calculated by DASSL.
By default DASSL calculates the iteration matrix M
by means of numerical finite differentiation. Therefore
it is necessary to evaluate the ODE function h n+ 1
times. However, it is also possible to equip DASSL
with an user-specific routine that provides manually
calculated iteration matrix M. Considering issues of
performance, the calculation of M is the most criti-
cal part. In table 1 are summarized the results for one
simulation of two different benchmark models (see 3),
where are denoted ts as simulation time, Jevals as num-
ber of jacobain evaluations and Jtime as time of evalu-
ation of the jacobian Jevals times. One can see that the
calculation of the jacobian matrix takes the major time
of the simulation time.

N x eqns
19 231 942

N x eqns
10 140 826

ts Jevals Jtime ts Jevals Jtime

10.8 111 9.7 2.4 69 1.4

Table 1: Simulation times vs. Jacobian evaluations

So at that point it’s possible to reduce the DASSL
solving time. It is quite evident that this could be tack-
led by exploiting the sparse structure of a Modelica
Model. One approach which uses the sparsity pattern
to reduce the amount of ODE-function calls is the par-
titioning of columns in colors and calculating them at
once [2]. Additionally the matrix M can be determined
in a symbolic way and combined with the coloring ap-
proach.

Therefore we test 4 different methods to calculate
the jacobians:

• finite difference approximations.

• finite difference approximations with coloring.

• symbolical jacobian generated by OpenModelica.

• symbolical jacobian generated by OpenModelica
with coloring.

For the numerical approximation of the jacobian the
forward finite differentiation is used, where h is deter-
mined by DASSL and it depends on x, ẏ, current step
size.

ẏ =
f (x+h)− f (x)

h
(4)

The symbolical jacobians are generated within the
OpenModelica compiler (for more details see [3],[1]).

2.1 Coloring Jacobians

The coloring of a matrix means first of all to color
columns that have no non-zero-elements in the same
row. Thus, the starting point for coloring is the sparsity
pattern of a matrix. The determination of the sparsity
pattern of a Modelica model is described in the next
section 2.2.

Assuming the matrix J with it’s sparsity pattern is
given as:

J =

j11 0 0 0 j15
0 j22 j23 0 0
j31 j32 0 0 0
0 0 j43 0 j45
0 0 0 j54 j55

 (5)

In this matrix J for example the columns 1 and 3 and
also the columns 2 and 4 have no shared non-zero
elements in the rows. Thus, this columns could be
calculated at once, since they are structural orthogo-
nal. Finding those structural orthogonal rows could
be done by re-formulating the problem as graph col-
oring of a bipartite graph. The bipartite graph G =

Fast Simulation of Fluid Models with Colored Jacobians

248 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

((V1,V2),E) consists of vertexes V1,V2, where V1 are
all rows and V2 are all columns. And for every non-
zero element an edge ei is defined between the in-
volved row and the corresponding column, vice versa.
For the matrix above the corresponding bipartite graph
is drawn in figure 1.

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 1: Bipartite graph G

Next step is coloring the column vertexes with the
minimum number of colors, so that no row vertex has a
connection to columns with the same color. This prob-
lem is well-known as NP-hard [2], but for the current
purpose it’s not very critical to find the optimum, so a
fast approximation is well-suited. Therefore a modi-
fied partial distance-2 coloring algorithm for bipartite
graphs is used as suggested also in [2]. In our tests it
reveals a good performance meaning that the solution
was really close to the chromatic number χ(G,V2),
which describes the optimal solution. This observa-
tion could be done since there exists a lower bound for
χ(G,V2). It is also shown in [2] that χ(G,V2) ≥ ∆V1
is true. This sounds intuitional for the reason that the
minimal partition size depends on the maximum num-
ber of non-zero elements in the rows. The time com-
plexity for the algorithm is O(|E| ∗∆V1), where ∆V1 is
the maximum degree of the vertex vi ∈ V1. For exam-
ple in the jacobian above, it’s easy to see that there are
several possible solutions as shown in figure 2.

After a coloring C of the columns is found, it’s pos-
sible to apply it to the calculation of the jacobians.
Now all columns with the same color are structural or-
thogonal and can be calculated at once. Therefore the
expected speed up for the calculation is speedup= |V2|

C .

2.2 Sparsity Pattern

The sparsity pattern for JA (see equation (2)) of a
Modelica Model could also be determined by means
of graph theory, because roughly spoken the sparsity

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 2: Bipartite graph G

pattern expresses which output variable has a connec-
tion to which state. So this could be formulated as a
st-connectivity problem in a directed graph. The st-
connectivity is a decision problem that asks if the ver-
tex t is reachable from the vertex s. A directed graph
is also naturally used in a Modelica tool for the sorting
of the equations with the tarjan algorithm. For exam-
ple if one has a system with 5 equations, and 5 states
a directed graph for sorting could look like the one in
figure (3).

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

Figure 3: Directed graph for sorting the example sys-
tem

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

x1

x2

x3

x4

x5

Figure 4: Expanded directed graph for sorting the ex-
ample system

For the ordinary sorting task by tarjan only the un-
knowns are considered, since the states are assumed to
be known. So for the determination of sparsity pattern
one would need to expand the graph by the states. This
is done in the way that every equation vertex gets an

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 249
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

additional incoming connection by the states that are
present in it. Finally the directed graph could look like
the one in figure (4).

The sparsity pattern in equation (6) could than be
obtained by finding all reachable vertexes for every
state. For every connection that could be found the
corresponding element is unequal zero. Finding the
reachable vertexes for one state results in one column
of the sparsity pattern.

J =

∗ 0 ∗ 0 ∗
0 ∗ 0 0 0
0 ∗ 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 ∗

 (6)

However, the determination of the sparsity pattern
via st-connectivity would require to traverse the whole
graph for every state, what is of course not applicable
for a large system. Thus one could benefit from the
already sorted system and also use additional informa-
tion from the adjacency matrix. For example consider
the following possible sorted adjacency matrix (7) for
the system above with the expansion about the states
and the equation where they occur.

z1 z3 z4 z2 z5 x1 x2 x3 x4 x5
f 4
f 5
f 1
f 2
f 3

1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0

(7)

In this BLT-sorted adjacency matrix we consider
row after row and propagate the dependent states
downwards to every equation. The accumulation of
the non-zero elements is arranged in an array of lists
for every equation. For the first equation we just add
the dependent states x5 to the corresponding list. For
the second equation there are no direct dependencies,
but we need to propagate the dependencies for the in-
volved variables. In this case for the variable z1 which
occurs in the first column the lists of f5 and f4 are
joined. For the next row it is necessary to add the
direct dependent variables x1,x3 and union them with
the indirect dependencies from variable z3 and so on.
This approach results in algorithm with a complexity
that depends on the amount of non-zero elements. Our
tests indicate even a logarithmic dependence for non-
zero elements. Thus the sparsity pattern can be deter-
mined efficiently.

3 Benchmark Fluid Models

The first benchmark model (see figure 5) consists of
three heated pipes in a row. The first pipe in flow di-
rection is connected to a water source which supplies
the liquid flow. The one-dimensional energy, mass and
momentum balances are discretized in flow direction.
The number of nodes which represent the connection
between the discrete elements is N. The heated metal
wall of the pipe represents a cylindrical metal wall
with L numbers of layers.

Figure 5: Pipes benchmark model

Figure 6: Heat exchanger benchmark model

The central part of our second more complex bench-
mark is an evaporator model (see figure 6) with paral-
lel tube rows. A parallel flow evaporator consists of
several heated tubes connected by an internal splitter
at the inlet and an internal mixer at the outlet. For each
of the Nl (number of parallel layers) exists a subaggre-
grate which also models the gas-side, using a simple
quasi stationary pressure drop. The water and steam
flow and the inner heat transfer is modeled using the

Fast Simulation of Fluid Models with Colored Jacobians

250 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

N x eqns colors
19 231 942 79

N x eqns colors
50 603 2430 203

N x eqns colors
100 1203 4830 403

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 922 27184 111 10.8 1014 72854 118 85.3 1058 144874 119 372.3

numC 922 8929 94 4.5 1023 26914 124 38.4 1064 46835 112 144.2
sym 937 1539 103 8.5 976 1643 119 65.2 1052 1732 126 287.2

symC 937 1539 103 4.3 976 1643 119 30.3 1052 1732 126 139.3
Dymola 783 8772 90 1.6 915 23453 106 11.3 1035 43707 103 53.4

Table 2: Simulation time for Tube3Test

N x eqns colors
40 500 2986 95

N x eqns colors
80 980 5866 175

N x eqns colors
160 1940 11626 335

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 492 38192 75 23.3 537 79131 80 94.7 542 140390 72 436.5

numC 516 10841 106 9.9 505 13810 75 27.3 596 28595 83 152.4
sym 544 774 74 44.9 536 726 77 176.7 556 752 83 792.1

symC 544 774 74 11.9 536 726 77 42.8 556 752 83 206.8
Dymola 359 7306 69 7.36 387 12531 67 22.4 408 23964 69 142

Table 3: Simulation times for HeatExchanger

pipe model. The outer heat transfer is assumed to be
constant. This model is suitable for building up huge
systems with many states since the number of tube lay-
ers of the evaporator can be adapted easily. Compared
to a complete and detailed heat recovery steam gener-
ator model the model in figure 6 is still small. This
justifies the requirement to improve the performance
to use in future OpenModelica for power plant simu-
lations.

4 Performance Measurements

The performance measurements are done on a work-
station machine(Intel CPU Q9550 @ 2.83GHz). For
the time measurements we run the simulation five
times take the mean, in addition the initialization pro-
cess is deducted. Here are depicted the results for the
benchmark models 3 with the four modes described
above in OpenModelica. Additionally, the results are
compared to Dymola. For all simulation was chosen a
tolerance of 1e−6, which is propagate in OpenModel-
ica as absolute and relative tolerance. This may be one
reason for the difference in the steps performed by the
Integrator.

In the top of the tables 2 and 3 are stated the model
details, where the variable N is used for resizing the
model resulting in numbers of states, equations for
the ODE-function and the colors. The method called

“num” calculates the jacobians numerically and the
method “sym” performs it symbolically. The addi-
tional “C” marks that the coloring is applied to these
methods.

First, it can be stated that the simulation time is ef-
fected a lot by the coloring as expected. The factor is
a bit lower than expected due to the different number
of steps and thus a different number of jacobian eval-
uation in each simulation. This can be considered as
numerical artefacts which are propagated and then in-
duce small differences in the step-size chosen by the
integrator. This effect can’t be observed for the sym-
bolic solution. Further, it can be stated for the numer-
ical solution the amount of ODE-function evaluation
is reduced dramatically and it tends to be close to Dy-
mola. This suggests that Dymola uses a similar tech-
niques.

5 Conclusions

The aim of this paper was to show that one key element
for a Modelica Tool to perform a fast simulation is the
exploiting of the sparsity pattern for the determination
of jacobians. Therefore it is necessary to determine the
sparsity pattern and partition the jacobians calculation
in order to reduce the evaluation time. This is realized
by graph theoretical means in OpenModelica. Further
it was shown on the presented benchmark models that

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 251
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

the effect is significant, moreover this feature pushes
OpenModelica further to an efficient simulation envi-
ronment for relevant industrial problems.

Acknowledgments

The German Ministry BMBF has partially
funded this work (BMBF Förderkennzeichen:
01IS09029C) within the ITEA2 project OPENPROD
(http://www.openprod.org).

References

[1] Åkesson J, Braun W, Lindholm P, Bachmann
B. Generation of Sparse Jacobians in the Func-
tion Mock-Up Interface 2.0. In: Proceedings of
the 9th Modelica Conference, Munich, Germany,
Modelica Association, 2012.

[2] Assefaw H. Gebremedhin, Fredrik Manne, and
Alex Pothen. What color is your jacobian? graph
coloring for computing derivatives. SIAM Rev.,
47(4):629–705, 2005.

[3] Braun W, Ochel L, Bachmann B. Symbolically
Derived Jacobians Using Automatic Differentia-
tion - Enhancement of the OpenModelica Com-
piler. In: Proceedings of the 8th Modelica Con-
ference, Dresden, Germany, Modelica Associa-
tion, 2010.

[4] Fritzson P. et. al.: OpenModelica System Doc-
umentation, PELAB, Department of Computer
and Information, Linköpings universitet, 2010.

[5] Siemens Energy: https://www.energy.

siemens.com

[6] Link K, Vogel S, Mynttinen I. Fluid Simulation
and Optimization using Open Source Tools. In:
In: Proceedings of the 8th Modelica Conference
2010, Dresden, Germany, Modelica Association,
20th to 22nd 2011 2010.

[7] Petzold L. R.: A Description of DASSL: A Dif-
ferential/Algebraic System Solver, Sandia Na-
tional Laboratories Livermore, 1982.

Fast Simulation of Fluid Models with Colored Jacobians

252 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

https://www.energy.siemens.com
https://www.energy.siemens.com

	1 Introduction
	2 Jacobian for Simulation
	2.1 Coloring Jacobians
	2.2 Sparsity Pattern

	3 Benchmark Fluid Models
	4 Performance Measurements
	5 Conclusions
	References

