
Generation of Sparse Jacobians for
the Function Mock-Up Interface 2.0

J. Åkessona,c, W. Braund , P. Lindholmb, B. Bachmannd

aLund University, Department of Automatic Control, Lund, Sweden
bLund University, Department of Mathematics, Lund, Sweden

cModelon AB, Lund, Sweden
dUniversity of Applied Sciences Bielefeld, Bielefeld, Germany

Derivatives, or Jacobians, are commonly required by numerical algorithms. Access to
accurate Jacobians often improves the performance and robustness of algorithms, and in
addition, efficient implementation of Jacobian computations can reduce the over-all execu-
tion time. In this paper, we present methods for computing Jacobians in the context of the
Functional Mock-up Interface (FMI), and Modelica. The algorithmic machinery employed
consists of known methods and algorithms, such as numerical, symbolic, and automatic dif-
ferentiation, as well as graph theoretic methods such as the BLT transformation. Two proto-
type implementations, sharing similarities as well as differences have been presented. One
of the methods is a straight forward application of forward automatic differentiation and
generation of C code, which results in functions for evaluation of directional derivatives,
which in turn are used to compute Jacobians. The other method relies mainly on symbolic
differentiation and makes use of symbolic simplification algorithms in a Modelica compiler
to generate directional derivative functions. Both methods provide sparsity patterns for the
ODE Jacobians, and and they both make efficient use of sparsity in order to reduce the
number of directional derivative evaluations, a techinque referred to as compression.

The two approaches are implemented in JModelica.org and OpenModelica, respectivly,
and compared in an industrial benchmark as well as in several synthetic benchmarks. Both
implementations show linear growth in key measures such as model compilation time, gen-
erated code size and execution time, under realistic assumptions on model structure. In
terms of execution speed, the method relying on symbolic differentiation and symbolic pro-
cessing, as implemented in OpenModelica, performed faster.

Figure 1: A power plant model used as benchmark in the papers, and the corresponding
sparsity pattern.


